These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Conformational variations in an infectious protein determine prion strain differences. Tanaka M; Chien P; Naber N; Cooke R; Weissman JS Nature; 2004 Mar; 428(6980):323-8. PubMed ID: 15029196 [TBL] [Abstract][Full Text] [Related]
4. Protein-only transmission of three yeast prion strains. King CY; Diaz-Avalos R Nature; 2004 Mar; 428(6980):319-23. PubMed ID: 15029195 [TBL] [Abstract][Full Text] [Related]
5. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion]. Ishikawa T Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880 [TBL] [Abstract][Full Text] [Related]
6. Structural biology: prying into prions. Dobson CM Nature; 2005 Jun; 435(7043):747-9. PubMed ID: 15944684 [No Abstract] [Full Text] [Related]
8. Prions of yeast are genes made of protein: amyloids and enzymes. Wickner RB; Edskes HK; Ross ED; Pierce MM; Shewmaker F; Baxa U; Brachmann A Cold Spring Harb Symp Quant Biol; 2004; 69():489-96. PubMed ID: 16117685 [No Abstract] [Full Text] [Related]
9. The structural basis of yeast prion strain variants. Toyama BH; Kelly MJ; Gross JD; Weissman JS Nature; 2007 Sep; 449(7159):233-7. PubMed ID: 17767153 [TBL] [Abstract][Full Text] [Related]
10. An efficient protein transformation protocol for introducing prions into yeast. Tanaka M; Weissman JS Methods Enzymol; 2006; 412():185-200. PubMed ID: 17046659 [TBL] [Abstract][Full Text] [Related]
11. Transformation of yeast by infectious prion particles. King CY; Wang HL; Chang HY Methods; 2006 May; 39(1):68-71. PubMed ID: 16759879 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into a yeast prion illuminate nucleation and strain diversity. Krishnan R; Lindquist SL Nature; 2005 Jun; 435(7043):765-72. PubMed ID: 15944694 [TBL] [Abstract][Full Text] [Related]
13. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae]. Yin W; He J; Yu Z; Wang J Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056 [TBL] [Abstract][Full Text] [Related]
14. The physical basis of how prion conformations determine strain phenotypes. Tanaka M; Collins SR; Toyama BH; Weissman JS Nature; 2006 Aug; 442(7102):585-9. PubMed ID: 16810177 [TBL] [Abstract][Full Text] [Related]
15. Prion recognition elements govern nucleation, strain specificity and species barriers. Tessier PM; Lindquist S Nature; 2007 May; 447(7144):556-61. PubMed ID: 17495929 [TBL] [Abstract][Full Text] [Related]
16. [Yeast prions, mammalian amyloidoses, and the problem of proteomic networks]. Galkin AP; Mironova LN; Zhuravleva GA; Inge-Vechtomov SG Genetika; 2006 Nov; 42(11):1558-70. PubMed ID: 17163073 [TBL] [Abstract][Full Text] [Related]
17. [Mechanism of prion-fibril formation]. Inoue Y; Yoshida M Tanpakushitsu Kakusan Koso; 2004 May; 49(7 Suppl):1108-9. PubMed ID: 15168540 [No Abstract] [Full Text] [Related]
18. Blessings in disguise: biological benefits of prion-like mechanisms. Newby GA; Lindquist S Trends Cell Biol; 2013 Jun; 23(6):251-9. PubMed ID: 23485338 [TBL] [Abstract][Full Text] [Related]
19. Prions as adaptive conduits of memory and inheritance. Shorter J; Lindquist S Nat Rev Genet; 2005 Jun; 6(6):435-50. PubMed ID: 15931169 [TBL] [Abstract][Full Text] [Related]
20. Generation of prion transmission barriers by mutational control of amyloid conformations. Chien P; DePace AH; Collins SR; Weissman JS Nature; 2003 Aug; 424(6951):948-51. PubMed ID: 12931190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]