BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 15030564)

  • 21. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing lipid raft dynamics during cell apoptosis.
    Malorni W; Garofalo T; Tinari A; Manganelli V; Misasi R; Sorice M
    Methods Enzymol; 2008; 442():125-40. PubMed ID: 18662567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and temporal control of signaling through lipid rafts.
    Golub T; Wacha S; Caroni P
    Curr Opin Neurobiol; 2004 Oct; 14(5):542-50. PubMed ID: 15464886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-free antibody capture method for analysis of detergent-resistant membrane rafts.
    Bamezai A; Kennedy C
    Methods Mol Biol; 2008; 477():137-47. PubMed ID: 19082945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation.
    Fan J; Sammalkorpi M; Haataja M
    FEBS Lett; 2010 May; 584(9):1678-84. PubMed ID: 19854186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines.
    Palmer CP; Mahen R; Schnell E; Djamgoz MB; Aydar E
    Cancer Res; 2007 Dec; 67(23):11166-75. PubMed ID: 18056441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SNARE proteins and 'membrane rafts'.
    Lang T
    J Physiol; 2007 Dec; 585(Pt 3):693-8. PubMed ID: 17478530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging lipid rafts.
    Ishitsuka R; Sato SB; Kobayashi T
    J Biochem; 2005 Mar; 137(3):249-54. PubMed ID: 15809325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function.
    Raza Shaikh S
    Prostaglandins Leukot Essent Fatty Acids; 2010; 82(4-6):159-64. PubMed ID: 20207118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid rafts make for slippery platforms.
    Lai EC
    J Cell Biol; 2003 Aug; 162(3):365-70. PubMed ID: 12885764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane domains in lymphocytes - from lipid rafts to protein scaffolds.
    Harder T; Engelhardt KR
    Traffic; 2004 Apr; 5(4):265-75. PubMed ID: 15030568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membranes are not just rafts.
    Shaikh SR; Edidin MA
    Chem Phys Lipids; 2006 Oct; 144(1):1-3. PubMed ID: 16945359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts.
    Kiyan J; Smith G; Haller H; Dumler I
    Biochem J; 2009 Oct; 423(3):343-51. PubMed ID: 19691446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol and sphingolipids as lipid organizers of the immune cells' plasma membrane: their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death.
    Gombos I; Kiss E; Detre C; László G; Matkó J
    Immunol Lett; 2006 Apr; 104(1-2):59-69. PubMed ID: 16388855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
    Rashid-Doubell F; Tannetta D; Redman CW; Sargent IL; Boyd CA; Linton EA
    Placenta; 2007; 28(2-3):139-51. PubMed ID: 16480767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CLN3p impacts galactosylceramide transport, raft morphology, and lipid content.
    Rusyn E; Mousallem T; Persaud-Sawin DA; Miller S; Boustany RM
    Pediatr Res; 2008 Jun; 63(6):625-31. PubMed ID: 18317235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rafts in oligodendrocytes: evidence and structure-function relationship.
    Gielen E; Baron W; Vandeven M; Steels P; Hoekstra D; Ameloot M
    Glia; 2006 Nov; 54(6):499-512. PubMed ID: 16927294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.