BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 15030762)

  • 1. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of nodal signalling and mesendoderm formation by TARAM-A, a TGFbeta-related type I receptor.
    Aoki TO; Mathieu J; Saint-Etienne L; Rebagliati MR; Peyriéras N; Rosa FM
    Dev Biol; 2002 Jan; 241(2):273-88. PubMed ID: 11784111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
    Angerer LM; Oleksyn DW; Levine AM; Li X; Klein WH; Angerer RC
    Development; 2001 Nov; 128(22):4393-404. PubMed ID: 11714666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis.
    Croce J; Lhomond G; Gache C
    Mech Dev; 2003 May; 120(5):561-72. PubMed ID: 12782273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling.
    Faucourt M; Houliston E; Besnardeau L; Kimelman D; Lepage T
    Dev Biol; 2001 Jan; 229(2):287-306. PubMed ID: 11203696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM; Burke RD
    Dev Biol; 2010 Nov; 347(1):71-81. PubMed ID: 20709054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
    Bradham CA; McClay DR
    Development; 2006 Jan; 133(1):21-32. PubMed ID: 16319119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.
    Duboc V; Röttinger E; Lapraz F; Besnardeau L; Lepage T
    Dev Cell; 2005 Jul; 9(1):147-58. PubMed ID: 15992548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.