BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 15030762)

  • 21. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BMP2 is a positive regulator of Nodal signaling during left-right axis formation in the chicken embryo.
    Schlange T; Arnold HH; Brand T
    Development; 2002 Jul; 129(14):3421-9. PubMed ID: 12091312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nodal signaling patterns the organizer.
    Gritsman K; Talbot WS; Schier AF
    Development; 2000 Mar; 127(5):921-32. PubMed ID: 10662632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation.
    Branford WW; Yost HJ
    Curr Biol; 2002 Dec; 12(24):2136-41. PubMed ID: 12498689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
    Lapraz F; Besnardeau L; Lepage T
    PLoS Biol; 2009 Nov; 7(11):e1000248. PubMed ID: 19956794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling.
    Li X; Wikramanayake AH; Klein WH
    Dev Biol; 1999 Aug; 212(2):425-39. PubMed ID: 10433832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
    Li E; Cui M; Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E906-13. PubMed ID: 24556994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning.
    Davis S; Miura S; Hill C; Mishina Y; Klingensmith J
    Dev Biol; 2004 Jun; 270(1):47-63. PubMed ID: 15136140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
    Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH
    Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo.
    Gross JM; Peterson RE; Wu SY; McClay DR
    Development; 2003 May; 130(9):1989-99. PubMed ID: 12642501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.