These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15031855)

  • 21. Bio-inspired design strategies for central pattern generator control in modular robotics.
    Herrero-Carrón F; Rodríguez FB; Varona P
    Bioinspir Biomim; 2011 Mar; 6(1):016006. PubMed ID: 21335644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
    Verdaasdonk BW; Koopman HF; van der Helm FC
    Biol Cybern; 2009 Jul; 101(1):49-61. PubMed ID: 19504121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust GRBF static neurocontroller with switch logic for control of robot manipulators.
    Mulero-Martínez JI
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1053-64. PubMed ID: 24807132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning.
    Xiong X; Worgotter F; Manoonpong P
    IEEE Trans Cybern; 2016 Nov; 46(11):2521-2534. PubMed ID: 26441437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Template for the neural control of directed stepping generalized to all legs of MantisBot.
    Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Jun; 12(4):045001. PubMed ID: 28422047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analysis of neural models for walking control.
    Reeve R; Hallam J
    IEEE Trans Neural Netw; 2005 May; 16(3):733-42. PubMed ID: 15941000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New neural circuits for robot phonotaxis.
    Reeve RE; Webb BH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2245-66. PubMed ID: 14599318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback.
    Knüsel J; Crespi A; Cabelguen JM; Ijspeert AJ; Ryczko D
    Front Neurorobot; 2020; 14():604426. PubMed ID: 33424576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defining a neural network controller structure for a rubbertuator robot.
    Ozkan M; Inoue K; Negishi K; Yamanaka T
    Neural Netw; 2000; 13(4-5):533-44. PubMed ID: 10946398
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.