These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15032364)

  • 1. Monolayer-protected gold nanoparticles as an efficient stationary phase for open tubular gas chromatography using a square capillary model for chip-based gas chromatography in square cornered microfabricated channels.
    Gross GM; Grate JW; Synovec RE
    J Chromatogr A; 2004 Mar; 1029(1-2):185-92. PubMed ID: 15032364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of gold-centered monolayer protected nanoparticle stationary phases for gas chromatography.
    Gross GM; Grate JW; Synovec RE
    J Chromatogr A; 2004 Dec; 1060(1-2):225-36. PubMed ID: 15628165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolayer-protected gold nanoparticles as a stationary phase for open tubular gas chromatography.
    Gross GM; Nelson DA; Grate JW; Synovec RE
    Anal Chem; 2003 Sep; 75(17):4558-64. PubMed ID: 14632064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single fiber-in-capillary annular column for gas chromatographic separation.
    Li P; Xu Z; Yang X; Bi W; Xiao D; Choi MM
    J Chromatogr A; 2009 Apr; 1216(15):3343-8. PubMed ID: 19268954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured Silver Coating as a Stationary Phase for Capillary Gas Chromatography.
    Jiang Q; Xu P; Feng J; Sun M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and application of polymethacrylate-based monolithic columns for fast and efficient separation of alkanes, alcohols, alkylbenzenes and isomeric mixtures by gas chromatography.
    Obbed MS; Aqel A; Al Othman ZA; Badjah-Hadj-Ahmed AY
    J Chromatogr A; 2018 Jun; 1555():89-99. PubMed ID: 29724647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of silica nanoparticles for gas chromatographic separation.
    Na N; Cui X; De Beer T; Liu T; Tang T; Sajid M; Ouyang J
    J Chromatogr A; 2011 Jul; 1218(28):4552-8. PubMed ID: 21652043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated ionic liquid column for separations in dry air.
    Li MW; Huang X; Zhu H; Kurabayashi K; Fan X
    J Chromatogr A; 2020 Jun; 1620():461002. PubMed ID: 32143874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid tandem-column micro-gas chromatography based on optofluidic ring resonators with multi-point on-column detection.
    Sun Y; Liu J; Howard DJ; Frye-Mason G; Thompson AK; Ja SJ; Fan X
    Analyst; 2010 Jan; 135(1):165-71. PubMed ID: 20024197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase.
    Reid VR; Stadermann M; Bakajin O; Synovec RE
    Talanta; 2009 Feb; 77(4):1420-5. PubMed ID: 19084659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of a new field in gas chromatography: capillary columns with a super-thick layer of stationary liquid phase.
    Berezkin VG; Lapin AB; Lipsky JB
    J Chromatogr A; 2005 Aug; 1084(1-2):18-23. PubMed ID: 16114231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation performance of cucurbit[8]uril and its coordination complex with cadmium (II) in capillary gas chromatography.
    Sun T; Ji N; Qi M; Tao Z; Fu R
    J Chromatogr A; 2014 May; 1343():167-73. PubMed ID: 24745846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-tubular gas chromatography using capillary coated with octadecylamine-capped gold nanoparticles.
    Qu QS; Shen F; Shen M; Hu XY; Yang GJ; Wang CY; Yan C; Zhang YK
    Anal Chim Acta; 2008 Feb; 609(1):76-81. PubMed ID: 18243876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peak focusing based on stationary phase thickness gradient.
    Li MW; Zhu H; Zhou M; She J; Li Z; Kurabayashi K; Fan X
    J Chromatogr A; 2020 Mar; 1614():460737. PubMed ID: 31831145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.
    Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE
    J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization - including in situ Small Angle X-Ray Scattering - of gas chromatographic capillary columns with mesoporous silica thin films as stationary phases.
    Lefebvre D; Rayes RS; Jousseaume V; Maret M; Veyre L; Charleux B; Thieuleux C; Ricoul F
    J Chromatogr A; 2015 Sep; 1413():85-93. PubMed ID: 26319377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography.
    Qiao L; Lu K; Qi M; Fu R
    J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography.
    Xie SM; Zhang XH; Zhang ZJ; Zhang M; Jia J; Yuan LM
    Anal Bioanal Chem; 2013 Apr; 405(10):3407-12. PubMed ID: 23361228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore size effect of mesoporous silica stationary phase on the separation performance of microfabricated gas chromatography columns.
    Hou L; Feng F; You W; Xu P; Luo F; Tian B; Zhou H; Li X
    J Chromatogr A; 2018 Jun; 1552():73-78. PubMed ID: 29665976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive two-dimensional gas chromatographic separations with a microfabricated thermal modulator.
    Serrano G; Paul D; Kim SJ; Kurabayashi K; Zellers ET
    Anal Chem; 2012 Aug; 84(16):6973-80. PubMed ID: 22860568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.