These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15032535)
1. Comparison of an empirical and a theoretical linear solvation energy relationship applied to the characterization of solute distribution in a poly(ethylene) glycol-salt aqueous biphasic system. Huddleston JG; Willauer HD; Burney MT; Tate LJ; Carruth AD; Rogers RD J Chem Inf Comput Sci; 2004; 44(2):549-58. PubMed ID: 15032535 [TBL] [Abstract][Full Text] [Related]
2. Limiting partition coefficients of solutes in biphasic trihexyltetradecylphosphonium chloride ionic liquid-supercritical CO2 system: measurement and LSER-based correlation. Planeta J; Karásek P; Roth M J Phys Chem B; 2007 Jul; 111(26):7620-5. PubMed ID: 17547452 [TBL] [Abstract][Full Text] [Related]
3. The electrostatic origin of Abraham's solute polarity parameter. Arey JS; Green WH; Gschwend PM J Phys Chem B; 2005 Apr; 109(15):7564-73. PubMed ID: 16851869 [TBL] [Abstract][Full Text] [Related]
4. Characterization of sorption mechanisms of solid-phase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach. Prikryl P; Sevcik JG J Chromatogr A; 2008 Jan; 1179(1):24-32. PubMed ID: 17964581 [TBL] [Abstract][Full Text] [Related]
5. Predictions of micelle-water partition coefficients and retention in micellar electrokinetic chromatography from solute structure. 2. Fragmental constant approach. Burns ST; Khaledi MG Anal Chem; 2004 Sep; 76(18):5451-8. PubMed ID: 15362906 [TBL] [Abstract][Full Text] [Related]
6. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: characterization of chemical selectivity using two linear solvation energy relationship models. Akbay C; Agbaria RA; Warner IM Electrophoresis; 2005 Jan; 26(2):426-45. PubMed ID: 15657890 [TBL] [Abstract][Full Text] [Related]
7. Application of linear solvation energy relationships to a custom-made polyaniline solid-phase microextraction fiber and three commercial fibers. Yeatts JL; Baynes RE; Xia XR; Riviere JE J Chromatogr A; 2008 Apr; 1188(2):108-17. PubMed ID: 18328492 [TBL] [Abstract][Full Text] [Related]
8. In silico package models for deriving values of solute parameters in linear solvation energy relationships. Xiao ZJ; Chen JW; Wang Y; Wang ZY SAR QSAR Environ Res; 2023 Jan; 34(1):21-37. PubMed ID: 36625152 [TBL] [Abstract][Full Text] [Related]
9. Predicting dermal permeability of biocides in commercial cutting fluids using a LSER approach. Vijay V; Yeatts JL; Riviere JE; Baynes RE Toxicol Lett; 2007 Dec; 175(1-3):34-43. PubMed ID: 18029120 [TBL] [Abstract][Full Text] [Related]
10. Effect of n-octanol in the mobile phase on lipophilicity determination by reversed-phase high-performance liquid chromatography on a modified silica column. Benhaim D; Grushka E J Chromatogr A; 2008 Oct; 1209(1-2):111-9. PubMed ID: 18814882 [TBL] [Abstract][Full Text] [Related]
11. Distribution of organic solutes in biphasic 1-n-butyl-3-methylimidazolium methyl sulfate-supercritical CO(2) system. Planeta J; Karásek P; Roth M J Phys Chem B; 2009 Jul; 113(28):9520-6. PubMed ID: 19537694 [TBL] [Abstract][Full Text] [Related]
13. An improved estimation of water-organic liquid interfacial tension based on linear solvation energy relationship approach. Apostoluk W; Drzymała J J Colloid Interface Sci; 2003 Jun; 262(2):483-8. PubMed ID: 16256629 [TBL] [Abstract][Full Text] [Related]
14. Characterization of biopartitioning micellar chromatography system using monolithic column by linear solvation energy relationship and application to predict blood-brain barrier penetration. Lu R; Sun J; Wang Y; Li H; Liu J; Fang L; He Z J Chromatogr A; 2009 Jul; 1216(27):5190-8. PubMed ID: 19481214 [TBL] [Abstract][Full Text] [Related]
15. Predicting Leachables Solubilization in Polysorbate 80 Solutions by a Linear Solvation Energy Relationship (LSER). Strobel AB; Egert T; Langguth P Pharm Res; 2021 Sep; 38(9):1549-1561. PubMed ID: 34580792 [TBL] [Abstract][Full Text] [Related]
16. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities. Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107 [TBL] [Abstract][Full Text] [Related]
17. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Redón L; Safar Beiranvand M; Subirats X; Rosés M Anal Chim Acta; 2023 Oct; 1277():341672. PubMed ID: 37604624 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of fatty tissue representative solvents in extraction of medical devices for chromatographic analysis of devices' extractables and leachables based on Abraham general solvation model. Li J J Chromatogr A; 2022 Aug; 1676():463240. PubMed ID: 35752148 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of the water/o-nitrophenyl octyl ether system in terms of the partition of nonelectrolytes and of ions. Abraham MH; Zhao YH Phys Chem Chem Phys; 2005 Jun; 7(12):2418-22. PubMed ID: 15962024 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of the water-isopropyl myristate system. Abraham MH; Acree WE Int J Pharm; 2005 Apr; 294(1-2):121-8. PubMed ID: 15814236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]