These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 15032537)
1. Artificial neural network modification of simulation-based fitting: application to a protein-lipid system. Nazarov PV; Apanasovich VV; Lutkovski VM; Yatskou MM; Koehorst RB; Hemminga MA J Chem Inf Comput Sci; 2004; 44(2):568-74. PubMed ID: 15032537 [TBL] [Abstract][Full Text] [Related]
2. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein. Nazarov PV; Koehorst RB; Vos WL; Apanasovich VV; Hemminga MA Biophys J; 2007 Feb; 92(4):1296-305. PubMed ID: 17114224 [TBL] [Abstract][Full Text] [Related]
3. Mimicking initial interactions of bacteriophage M13 coat protein disassembly in model membrane systems. Stopar D; Spruijt RB; Wolfs CJ; Hemminga MA Biochemistry; 1998 Jul; 37(28):10181-7. PubMed ID: 9665724 [TBL] [Abstract][Full Text] [Related]
4. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network. Di Paola V; Marijuán PC; Lahoz-Beltra R Biosystems; 2004; 74(1-3):29-49. PubMed ID: 15125991 [TBL] [Abstract][Full Text] [Related]
5. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems. Ihme M; Marsden AL; Pitsch H Neural Comput; 2008 Feb; 20(2):573-601. PubMed ID: 18045024 [TBL] [Abstract][Full Text] [Related]
6. Higher-codimension bifurcations in a discrete unidirectional neural network model with delayed feedback. Peng M; Huang L; Wang G Chaos; 2008 Jun; 18(2):023105. PubMed ID: 18601472 [TBL] [Abstract][Full Text] [Related]
7. Membrane assembly of M13 major coat protein: evidence for a structural adaptation in the hinge region and a tilted transmembrane domain. Spruijt RB; Wolfs CJ; Hemminga MA Biochemistry; 2004 Nov; 43(44):13972-80. PubMed ID: 15518546 [TBL] [Abstract][Full Text] [Related]
8. FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association. Nazarov PV; Koehorst RB; Vos WL; Apanasovich VV; Hemminga MA Biophys J; 2006 Jul; 91(2):454-66. PubMed ID: 16632512 [TBL] [Abstract][Full Text] [Related]
9. Analysis and simulation of creativity learning by means of artificial neural networks. Memmert D; Perl J Hum Mov Sci; 2009 Apr; 28(2):263-82. PubMed ID: 19110331 [TBL] [Abstract][Full Text] [Related]
10. Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. Bryjak J; Ciesielski K; Zbiciński I J Biotechnol; 2004 Oct; 114(1-2):177-85. PubMed ID: 15464611 [TBL] [Abstract][Full Text] [Related]
11. A neural-network-based method for predicting protein stability changes upon single point mutations. Capriotti E; Fariselli P; Casadio R Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782 [TBL] [Abstract][Full Text] [Related]
12. Intelligent initialization of resource allocating RBF networks. Wallace M; Tsapatsoulis N; Kollias S Neural Netw; 2005 Mar; 18(2):117-22. PubMed ID: 15795110 [TBL] [Abstract][Full Text] [Related]
13. Distribution analysis for single molecule FRET measurement. Okamoto K; Terazima M J Phys Chem B; 2008 Jun; 112(24):7308-14. PubMed ID: 18491936 [TBL] [Abstract][Full Text] [Related]
14. Quantification of Protein-Lipid Selectivity using FRET: Application to the M13 Major Coat Protein. Fernandes F; Loura LM; Koehorst R; Spruijt RB; Hemminga MA; Fedorov A; Prieto M Biophys J; 2004 Jul; 87(1):344-52. PubMed ID: 15240469 [TBL] [Abstract][Full Text] [Related]
15. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding. Allen LR; Paci E J Phys Condens Matter; 2010 Jun; 22(23):235103. PubMed ID: 21393762 [TBL] [Abstract][Full Text] [Related]
16. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design. Huang RB; Du QS; Wei YT; Pang ZW; Wei H; Chou KC J Theor Biol; 2009 Feb; 256(3):428-35. PubMed ID: 18835398 [TBL] [Abstract][Full Text] [Related]
17. Boundedness and stability for nonautonomous cellular neural networks with delay. Rehim M; Jiang H; Teng Z Neural Netw; 2004 Sep; 17(7):1017-25. PubMed ID: 15312843 [TBL] [Abstract][Full Text] [Related]
18. Förster resonance energy transfer as a tool for quantification of protein-lipid selectivity. Loura LM; Prieto M; Fernandes F Methods Mol Biol; 2013; 974():219-32. PubMed ID: 23404278 [TBL] [Abstract][Full Text] [Related]
19. Robust stability of stochastic delayed additive neural networks with Markovian switching. Huang H; Ho DW; Qu Y Neural Netw; 2007 Sep; 20(7):799-809. PubMed ID: 17714914 [TBL] [Abstract][Full Text] [Related]
20. Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma. Wang JX; Zhang B; Yu JK; Liu J; Yang MQ; Zheng S Chin Med J (Engl); 2005 Aug; 118(15):1278-84. PubMed ID: 16117882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]