These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15032552)

  • 1. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods.
    Deng W; Breneman C; Embrechts MJ
    J Chem Inf Comput Sci; 2004; 44(2):699-703. PubMed ID: 15032552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.
    Kulharia M; Goody RS; Jackson RM
    J Chem Inf Model; 2008 Oct; 48(10):1990-8. PubMed ID: 18767831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M-score: a knowledge-based potential scoring function accounting for protein atom mobility.
    Yang CY; Wang R; Wang S
    J Med Chem; 2006 Oct; 49(20):5903-11. PubMed ID: 17004706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance dependent scoring function for describing protein-ligand intermolecular interactions.
    Artemenko N
    J Chem Inf Model; 2008 Mar; 48(3):569-74. PubMed ID: 18290639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors.
    Cormanich RA; Goodarzi M; Freitas MP
    Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the binding affinity of epitope-peptides with HLA-A*0201 by encoding atom-pair non-covalent interaction information between receptor and ligands.
    Hu L; Ai Z; Liu P; Xiong Q; Min M; Lan C; Wang J; Fan L; Chen D
    Chem Biol Drug Des; 2010 Jun; 75(6):597-606. PubMed ID: 20565476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein-ligand binding affinities: a low scoring game?
    Marsden PM; Puvanendrampillai D; Mitchell JB; Glen RC
    Org Biomol Chem; 2004 Nov; 2(22):3267-73. PubMed ID: 15534704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes.
    Zhang C; Liu S; Zhu Q; Zhou Y
    J Med Chem; 2005 Apr; 48(7):2325-35. PubMed ID: 15801826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors.
    Jalali-Heravi M; Kyani A
    Eur J Med Chem; 2007 May; 42(5):649-59. PubMed ID: 17316919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF; Gohlke H; Klebe G
    J Med Chem; 2005 Oct; 48(20):6296-303. PubMed ID: 16190756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.
    Li S; Xi L; Wang C; Li J; Lei B; Liu H; Yao X
    J Comput Chem; 2009 Apr; 30(6):900-9. PubMed ID: 18785151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes.
    Raha K; Merz KM
    J Med Chem; 2005 Jul; 48(14):4558-75. PubMed ID: 15999994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New hybrid genetic based Support Vector Regression as QSAR approach for analyzing flavonoids-GABA(A) complexes.
    Goodarzi M; Duchowicz PR; Wu CH; Fernández FM; Castro EA
    J Chem Inf Model; 2009 Jun; 49(6):1475-85. PubMed ID: 19492793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised scoring models with docked ligand conformations for structure-based virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(5):1858-67. PubMed ID: 17685604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LigScore: a novel scoring function for predicting binding affinities.
    Krammer A; Kirchhoff PD; Jiang X; Venkatachalam CM; Waldman M
    J Mol Graph Model; 2005 Apr; 23(5):395-407. PubMed ID: 15781182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms.
    Block P; Paern J; Hüllermeier E; Sanschagrin P; Sotriffer CA; Klebe G
    Proteins; 2006 Nov; 65(3):607-22. PubMed ID: 16955490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.