These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15032730)

  • 21. General Aspects of Two-Component Regulatory Circuits in Bacteria: Domains, Signals and Roles.
    Padilla-Vaca F; Mondragón-Jaimes V; Franco B
    Curr Protein Pept Sci; 2017; 18(10):990-1004. PubMed ID: 27514854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis.
    Yamamoto K; Kitayama T; Minagawa S; Watanabe T; Sawada S; Okamoto T; Utsumi R
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2306-10. PubMed ID: 11758928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy.
    Stephenson K; Hoch JA
    Pharmacol Ther; 2002; 93(2-3):293-305. PubMed ID: 12191621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-component signal transduction systems in eukaryotic microorganisms.
    Loomis WF; Kuspa A; Shaulsky G
    Curr Opin Microbiol; 1998 Dec; 1(6):643-8. PubMed ID: 10066536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of the plant cytokinin transduction pathway by bacterial histidine kinase inhibitors in Catharanthus roseus cell cultures.
    Papon N; Clastre M; Gantet P; Rideau M; Chénieux JC; Crèche J
    FEBS Lett; 2003 Feb; 537(1-3):101-5. PubMed ID: 12606039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays.
    Laub MT; Biondi EG; Skerker JM
    Methods Enzymol; 2007; 423():531-48. PubMed ID: 17609150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis.
    Carapia-Minero N; Castelán-Vega JA; Pérez NO; Rodríguez-Tovar AV
    J Mol Model; 2017 Dec; 24(1):13. PubMed ID: 29248994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical approaches to reversible protein phosphorylation.
    Cole PA; Courtney AD; Shen K; Zhang Z; Qiao Y; Lu W; Williams DM
    Acc Chem Res; 2003 Jun; 36(6):444-52. PubMed ID: 12809531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence.
    Worthington RJ; Blackledge MS; Melander C
    Future Med Chem; 2013 Jul; 5(11):1265-84. PubMed ID: 23859207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein kinases as antibacterial targets.
    Schreiber M; Res I; Matter A
    Curr Opin Cell Biol; 2009 Apr; 21(2):325-30. PubMed ID: 19246185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial histidine kinase as signal sensor and transducer.
    Khorchid A; Ikura M
    Int J Biochem Cell Biol; 2006 Mar; 38(3):307-12. PubMed ID: 16242988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae.
    Song HK; Lee JY; Lee MG; Moon J; Min K; Yang JK; Suh SW
    J Mol Biol; 1999 Nov; 293(4):753-61. PubMed ID: 10543964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The yeasts phosphorelay systems: a comparative view.
    Salas-Delgado G; Ongay-Larios L; Kawasaki-Watanabe L; López-Villaseñor I; Coria R
    World J Microbiol Biotechnol; 2017 Jun; 33(6):111. PubMed ID: 28470426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans.
    Vargas-Pérez I; Sánchez O; Kawasaki L; Georgellis D; Aguirre J
    Eukaryot Cell; 2007 Sep; 6(9):1570-83. PubMed ID: 17630329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What do archaeal and eukaryotic histidine kinases sense?
    Papon N; Stock AM
    F1000Res; 2019; 8():. PubMed ID: 31942238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein kinase inhibitors: insights into drug design from structure.
    Noble ME; Endicott JA; Johnson LN
    Science; 2004 Mar; 303(5665):1800-5. PubMed ID: 15031492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial histidine kinases as novel antibacterial drug targets.
    Bem AE; Velikova N; Pellicer MT; Baarlen Pv; Marina A; Wells JM
    ACS Chem Biol; 2015 Jan; 10(1):213-24. PubMed ID: 25436989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel domains of the prokaryotic two-component signal transduction systems.
    Galperin MY; Nikolskaya AN; Koonin EV
    FEMS Microbiol Lett; 2001 Sep; 203(1):11-21. PubMed ID: 11557134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview.
    Tiwari S; Jamal SB; Hassan SS; Carvalho PVSD; Almeida S; Barh D; Ghosh P; Silva A; Castro TLP; Azevedo V
    Front Microbiol; 2017; 8():1878. PubMed ID: 29067003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics.
    Utsumi R
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1663-1669. PubMed ID: 28743208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.