These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15032767)

  • 1. Conditional estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements.
    Li E; Zhang D; Davidian M
    Biometrics; 2004 Mar; 60(1):1-7. PubMed ID: 15032767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian nonparametric regression analysis of data with random effects covariates from longitudinal measurements.
    Ryu D; Li E; Mallick BK
    Biometrics; 2011 Jun; 67(2):454-66. PubMed ID: 20880012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint models for a primary endpoint and multiple longitudinal covariate processes.
    Li E; Wang N; Wang NY
    Biometrics; 2007 Dec; 63(4):1068-78. PubMed ID: 17501940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural inference in transition measurement error models for longitudinal data.
    Pan W; Lin X; Zeng D
    Biometrics; 2006 Jun; 62(2):402-12. PubMed ID: 16918904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear mixed models with flexible distributions of random effects for longitudinal data.
    Zhang D; Davidian M
    Biometrics; 2001 Sep; 57(3):795-802. PubMed ID: 11550930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome.
    Zhang D; Lin X; Sowers M
    Biometrics; 2007 Jun; 63(2):351-62. PubMed ID: 17688488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference.
    Roy J; Lin X
    Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
    Song X; Davidian M; Tsiatis AA
    Biometrics; 2002 Dec; 58(4):742-53. PubMed ID: 12495128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression analysis of longitudinal data with random change point.
    Zhang P; Chen X; Sun J
    Stat Methods Med Res; 2024 Apr; 33(4):634-646. PubMed ID: 38396379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiparametric estimation in generalized linear mixed models with auxiliary covariates: a pairwise likelihood approach.
    Liu L; Xiang L
    Biometrics; 2014 Dec; 70(4):910-9. PubMed ID: 25251282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marginally specified generalized linear mixed models: a robust approach.
    Mills JE; Field CA; Dupuis DJ
    Biometrics; 2002 Dec; 58(4):727-34. PubMed ID: 12495126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercepts and slopes.
    Neuhaus JM; McCulloch CE; Boylan R
    Stat Med; 2013 Jun; 32(14):2419-29. PubMed ID: 23203817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian quantile regression joint models: Inference and dynamic predictions.
    Yang M; Luo S; DeSantis S
    Stat Methods Med Res; 2019 Aug; 28(8):2524-2537. PubMed ID: 29962288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logistic regression when covariates are random effects from a non-linear mixed model.
    De la Cruz R; Marshall G; Quintana FA
    Biom J; 2011 Sep; 53(5):735-49. PubMed ID: 21770044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased and unbiased estimation in longitudinal studies with informative visit processes.
    McCulloch CE; Neuhaus JM; Olin RL
    Biometrics; 2016 Dec; 72(4):1315-1324. PubMed ID: 26990830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements.
    Wang CY; Wang N; Wang S
    Biometrics; 2000 Jun; 56(2):487-95. PubMed ID: 10877308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles.
    Fieuws S; Verbeke G
    Biometrics; 2006 Jun; 62(2):424-31. PubMed ID: 16918906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data.
    Ferede MM; Dagne GA; Mwalili SM; Bilchut WH; Engida HA; Karanja SM
    BMC Med Res Methodol; 2024 Mar; 24(1):56. PubMed ID: 38429729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized linear mixed models with varying coefficients for longitudinal data.
    Zhang D
    Biometrics; 2004 Mar; 60(1):8-15. PubMed ID: 15032768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.