These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 15032800)

  • 1. Naïve nonparametric bootstrap model weights are biased.
    Wagenmakers EJ; Farrell S; Ratcliff R
    Biometrics; 2004 Mar; 60(1):281-3; author reply 283. PubMed ID: 15032800
    [No Abstract]   [Full Text] [Related]  

  • 2. On population size estimators in the Poisson mixture model.
    Mao CX; Yang N; Zhong J
    Biometrics; 2013 Sep; 69(3):758-65. PubMed ID: 23865502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint modeling of survival and longitudinal data: likelihood approach revisited.
    Hsieh F; Tseng YK; Wang JL
    Biometrics; 2006 Dec; 62(4):1037-43. PubMed ID: 17156277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable selection for marginal longitudinal generalized linear models.
    Cantoni E; Flemming JM; Ronchetti E
    Biometrics; 2005 Jun; 61(2):507-14. PubMed ID: 16011698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonparametric methods for measurements below detection limit.
    Zhang D; Fan C; Zhang J; Zhang CH
    Stat Med; 2009 Feb; 28(4):700-15. PubMed ID: 19035469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the bias corrected estimates in logistic regression.
    Maiti T; Pradhan V
    Stat Methods Med Res; 2008 Dec; 17(6):621-34. PubMed ID: 18375454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models.
    Thai HT; Mentré F; Holford NH; Veyrat-Follet C; Comets E
    Pharm Stat; 2013; 12(3):129-40. PubMed ID: 23457061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilevel bootstrap analysis with assumptions violated.
    Vallejo Seco G; Ato García M; Fernández García MP; Livacic Rojas PE
    Psicothema; 2013; 25(4):520-8. PubMed ID: 24124787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weighted nonparametric maximum likelihood estimate of a mixing distribution in nonrandomized clinical trials.
    Liu C; Xie J; Zhang Y
    Stat Med; 2007 Dec; 26(29):5303-19. PubMed ID: 17497612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the species accumulation curve using mixtures.
    Mao CX; Colwell RK; Chang J
    Biometrics; 2005 Jun; 61(2):433-41. PubMed ID: 16011689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bias-corrected maximum likelihood estimator of the intraclass correlation parameter for binary data.
    Saha KK; Paul SR
    Stat Med; 2005 Nov; 24(22):3497-512. PubMed ID: 16007569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of nonparametric and parametric methods to adjust for baseline measures.
    Carlsson MO; Zou KH; Yu CR; Liu K; Sun FW
    Contemp Clin Trials; 2014 Mar; 37(2):225-33. PubMed ID: 24462567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiparametric ROC surfaces for continuous diagnostic tests based on two test measurements.
    Wan S; Zhang B
    Stat Med; 2009 Aug; 28(18):2370-83. PubMed ID: 19499550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REML estimation for survival models with frailty.
    McGilchrist CA
    Biometrics; 1993 Mar; 49(1):221-5. PubMed ID: 8513103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias reduction in logistic dose-response models.
    Wagler A
    J Biopharm Stat; 2011 May; 21(3):405-22. PubMed ID: 21442516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonparametric estimation of ROC curves in the absence of a gold standard.
    Zhou XH; Castelluccio P; Zhou C
    Biometrics; 2005 Jun; 61(2):600-9. PubMed ID: 16011710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact two-sample inference with missing data.
    Cheung YK
    Biometrics; 2005 Jun; 61(2):524-31. PubMed ID: 16011700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonparametric method for penetrance function estimation.
    Alarcon F; Bonaïti-Pellié C; Harari-Kermadec H
    Genet Epidemiol; 2009 Jan; 33(1):38-44. PubMed ID: 18618769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of statistical methods for clustered data analysis with Gaussian error.
    Feng Z; McLerran D; Grizzle J
    Stat Med; 1996 Aug; 15(16):1793-806. PubMed ID: 8870161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Jolly-Seber model with tag loss.
    Cowen L; Schwarz CJ
    Biometrics; 2006 Sep; 62(3):699-705. PubMed ID: 16984310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.