These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 15032815)
1. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Lux A; Sottníková A; Opatrná J; Greger M Physiol Plant; 2004 Apr; 120(4):537-545. PubMed ID: 15032815 [TBL] [Abstract][Full Text] [Related]
2. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Meyer CJ; Seago JL; Peterson CA Ann Bot; 2009 Mar; 103(5):687-702. PubMed ID: 19151041 [TBL] [Abstract][Full Text] [Related]
3. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. Yang H; Yu H; Wang S; Bayouli IT; Huang H; Ye D; Zhang X; Liu T; Wang Y; Zheng Z; Meers E; Li T J Hazard Mater; 2023 Oct; 460():132276. PubMed ID: 37625294 [TBL] [Abstract][Full Text] [Related]
4. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Líška D; Martinka M; Kohanová J; Lux A Ann Bot; 2016 Oct; 118(4):667-674. PubMed ID: 27112163 [TBL] [Abstract][Full Text] [Related]
5. Development, dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root. Šottníková A; Lux A New Phytol; 2003 Oct; 160(1):135-143. PubMed ID: 33873523 [TBL] [Abstract][Full Text] [Related]
6. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Zimmermann HM; Hartmann K; Schreiber L; Steudle E Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137 [TBL] [Abstract][Full Text] [Related]
7. Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredii. Liu Y; Tao Q; Guo X; Luo J; Li J; Liang Y; Li T Sci Total Environ; 2020 Jun; 723():137810. PubMed ID: 32213402 [TBL] [Abstract][Full Text] [Related]
8. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors. Tylová E; Pecková E; Blascheová Z; Soukup A Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408 [TBL] [Abstract][Full Text] [Related]
9. Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots. Kohanová J; Martinka M; Vaculík M; White PJ; Hauser MT; Lux A Ann Bot; 2018 Nov; 122(5):903-914. PubMed ID: 29394308 [TBL] [Abstract][Full Text] [Related]
10. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658 [TBL] [Abstract][Full Text] [Related]
11. Developmental anatomy of the root cortex of the basal monocotyledon, Acorus calamus (Acorales, Acoraceae). Soukup A; Seago JL; Votrubová O Ann Bot; 2005 Sep; 96(3):379-85. PubMed ID: 15965268 [TBL] [Abstract][Full Text] [Related]
12. Water uptake by roots: effects of water deficit. Steudle E J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237 [TBL] [Abstract][Full Text] [Related]
14. Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Martinka M; Dolan L; Pernas M; Abe J; Lux A Ann Bot; 2012 Jul; 110(2):361-71. PubMed ID: 22645115 [TBL] [Abstract][Full Text] [Related]
15. Evidence for symplastic involvement in the radial movement of calcium in onion roots. Cholewa E; Peterson CA Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381 [TBL] [Abstract][Full Text] [Related]
16. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Qi X; Tam NF; Li WC; Ye Z Environ Pollut; 2020 Sep; 264():114736. PubMed ID: 32417578 [TBL] [Abstract][Full Text] [Related]
17. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers. Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Liu Y; Lu M; Tao Q; Luo J; Li J; Guo X; Liang Y; Yang X; Li T Environ Pollut; 2020 Nov; 266(Pt 3):115235. PubMed ID: 32707356 [TBL] [Abstract][Full Text] [Related]
19. Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). Tao Q; Li M; Xu Q; Kováč J; Yuan S; Li B; Li Q; Huang R; Gao X; Wang C J Hazard Mater; 2022 Mar; 425():128008. PubMed ID: 34986570 [TBL] [Abstract][Full Text] [Related]
20. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Tao Q; Jupa R; Liu Y; Luo J; Li J; Kováč J; Li B; Li Q; Wu K; Liang Y; Lux A; Wang C; Li T Plant Cell Environ; 2019 May; 42(5):1425-1440. PubMed ID: 30577078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]