These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15032841)
1. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Armengaud P; Thiery L; Buhot N; Grenier-De March G; Savouré A Physiol Plant; 2004 Mar; 120(3):442-450. PubMed ID: 15032841 [TBL] [Abstract][Full Text] [Related]
2. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Verdoy D; Coba De La Peña T; Redondo FJ; Lucas MM; Pueyo JJ Plant Cell Environ; 2006 Oct; 29(10):1913-23. PubMed ID: 16930317 [TBL] [Abstract][Full Text] [Related]
3. A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. Kim GB; Nam YW J Plant Physiol; 2013 Feb; 170(3):291-302. PubMed ID: 23158502 [TBL] [Abstract][Full Text] [Related]
4. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Székely G; Abrahám E; Cséplo A; Rigó G; Zsigmond L; Csiszár J; Ayaydin F; Strizhov N; Jásik J; Schmelzer E; Koncz C; Szabados L Plant J; 2008 Jan; 53(1):11-28. PubMed ID: 17971042 [TBL] [Abstract][Full Text] [Related]
5. Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. Ricoult C; Echeverria LO; Cliquet JB; Limami AM J Exp Bot; 2006; 57(12):3079-89. PubMed ID: 16899523 [TBL] [Abstract][Full Text] [Related]
6. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Merchan F; de Lorenzo L; Rizzo SG; Niebel A; Manyani H; Frugier F; Sousa C; Crespi M Plant J; 2007 Jul; 51(1):1-17. PubMed ID: 17488237 [TBL] [Abstract][Full Text] [Related]
7. DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Zhang CY; Wang NN; Zhang YH; Feng QZ; Yang CW; Liu B Genet Mol Res; 2013 Apr; 12(2):1269-77. PubMed ID: 23661451 [TBL] [Abstract][Full Text] [Related]
8. Differential Contribution of P5CS Isoforms to Stress Tolerance in Arabidopsis. Funck D; Baumgarten L; Stift M; von Wirén N; Schönemann L Front Plant Sci; 2020; 11():565134. PubMed ID: 33101333 [TBL] [Abstract][Full Text] [Related]
9. Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. López M; Tejera NA; Iribarne C; Lluch C; Herrera-Cervera JA Physiol Plant; 2008 Dec; 134(4):575-82. PubMed ID: 18823327 [TBL] [Abstract][Full Text] [Related]
10. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Bianco C; Defez R J Exp Bot; 2009; 60(11):3097-107. PubMed ID: 19436044 [TBL] [Abstract][Full Text] [Related]
11. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Gargantini PR; Gonzalez-Rizzo S; Chinchilla D; Raices M; Giammaria V; Ulloa RM; Frugier F; Crespi MD Plant J; 2006 Dec; 48(6):843-56. PubMed ID: 17132148 [TBL] [Abstract][Full Text] [Related]
12. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Filippou P; Antoniou C; Fotopoulos V Free Radic Biol Med; 2013 Mar; 56():172-83. PubMed ID: 23041351 [TBL] [Abstract][Full Text] [Related]
13. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Miller G; Stein H; Honig A; Kapulnik Y; Zilberstein A Planta; 2005 Sep; 222(1):70-9. PubMed ID: 15809861 [TBL] [Abstract][Full Text] [Related]
14. Regulation of CPSase, ACTase, and OCTase genes in Medicago truncatula: Implications for carbamoylphosphate synthesis and allocation to pyrimidine and arginine de novo biosynthesis. Brady BS; Hyman BC; Lovatt CJ Gene; 2010 Aug; 462(1-2):18-25. PubMed ID: 20451592 [TBL] [Abstract][Full Text] [Related]
15. Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Zhang LP; Mehta SK; Liu ZP; Yang ZM Plant Cell Physiol; 2008 Mar; 49(3):411-9. PubMed ID: 18252734 [TBL] [Abstract][Full Text] [Related]
16. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Popova OV; Yang O; Dietz KJ; Golldack D Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123 [TBL] [Abstract][Full Text] [Related]
17. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. Guo S; Ma X; Cai W; Wang Y; Gao X; Fu B; Li S Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365447 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Zhang JY; Broeckling CD; Blancaflor EB; Sledge MK; Sumner LW; Wang ZY Plant J; 2005 Jun; 42(5):689-707. PubMed ID: 15918883 [TBL] [Abstract][Full Text] [Related]
19. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Peel GJ; Pang Y; Modolo LV; Dixon RA Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693 [TBL] [Abstract][Full Text] [Related]