These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15032905)

  • 1. Perspectives on hyperphalangy: patterns and processes.
    Fedak TJ; Hall BK
    J Anat; 2004 Mar; 204(Pt 3):151-63. PubMed ID: 15032905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of hyperphalangy and digit reduction in the cetacean manus.
    Cooper LN; Berta A; Dawson SD; Reidenberg JS
    Anat Rec (Hoboken); 2007 Jun; 290(6):654-72. PubMed ID: 17516431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review and experimental evaluation of the embryonic development and evolutionary history of flipper development and hyperphalangy in dolphins (Cetacea: Mammalia).
    Cooper LN; Sears KE; Armfield BA; Kala B; Hubler M; Thewissen JGM
    Genesis; 2018 Jan; 56(1):. PubMed ID: 29068152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time, pattern, and heterochrony: a study of hyperphalangy in the dolphin embryo flipper.
    Richardson MK; Oelschläger HH
    Evol Dev; 2002; 4(6):435-44. PubMed ID: 12492144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of ossification in the manus of the harbor porpoise (Phocoena phocoena): hyperphalangy and delta-shaped bones.
    Dawson SD
    J Morphol; 2003 Nov; 258(2):200-6. PubMed ID: 14518013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud.
    Merino R; Macias D; Gañan Y; Economides AN; Wang X; Wu Q; Stahl N; Sampath KT; Varona P; Hurle JM
    Dev Biol; 1999 Feb; 206(1):33-45. PubMed ID: 9918693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the influences of soft-tissue flipper development on skeletal variation using an extinct taxon.
    Maxwell EE
    J Exp Zool B Mol Dev Evol; 2012 Nov; 318(7):545-54. PubMed ID: 22744735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation.
    Sun L; Cao Y; Kong Q; Huang X; Yu Z; Sun D; Ren W; Yang G; Xu S
    Genomics; 2021 Sep; 113(5):2925-2933. PubMed ID: 34166750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential tissue growth and patterns of cell death in mouse limb autopod morphogenesis.
    Salas-Vidal E; Valencia C; Covarrubias L
    Dev Dyn; 2001 Apr; 220(4):295-306. PubMed ID: 11307164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans.
    Sun L; Rong X; Liu X; Yu Z; Zhang Q; Ren W; Yang G; Xu S
    BMC Genomics; 2022 Dec; 23(1):797. PubMed ID: 36460960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular anatomy and evolution of the cetacean forelimb.
    Cooper LN; Dawson SD; Reidenberg JS; Berta A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1121-37. PubMed ID: 17721984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling.
    Merino R; Gañan Y; Macias D; Economides AN; Sampath KT; Hurle JM
    Dev Biol; 1998 Aug; 200(1):35-45. PubMed ID: 9698454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
    Chiang C; Litingtung Y; Harris MP; Simandl BK; Li Y; Beachy PA; Fallon JF
    Dev Biol; 2001 Aug; 236(2):421-35. PubMed ID: 11476582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod.
    Gañan Y; Macias D; Basco RD; Merino R; Hurle JM
    Dev Biol; 1998 Apr; 196(1):33-41. PubMed ID: 9527879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digit evolution in gymnophthalmid lizards.
    Roscito JG; Nunes PM; Rodrigues MT
    Int J Dev Biol; 2014; 58(10-12):895-908. PubMed ID: 26154330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development.
    Selever J; Liu W; Lu MF; Behringer RR; Martin JF
    Dev Biol; 2004 Dec; 276(2):268-79. PubMed ID: 15581864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper.
    Wang Z; Yuan L; Rossiter SJ; Zuo X; Ru B; Zhong H; Han N; Jones G; Jepson PD; Zhang S
    Mol Biol Evol; 2009 Mar; 26(3):613-22. PubMed ID: 19074008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the study of limb development: the emergence and function of the apical ectodermal ridge.
    Rodriguez-Leon J; Tomas AR; Johnson A; Kawakami Y
    J Stem Cells; 2013; 8(2):79-98. PubMed ID: 24698985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histogenetic potential of rat hind-limb interdigital tissues prior to and during the onset of programmed cell death.
    Lee KK; Chan WY; Sze LY
    Anat Rec; 1993 Jul; 236(3):568-72. PubMed ID: 8363061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted misexpression of constitutively active BMP receptor-IB causes bifurcation, duplication, and posterior transformation of digit in mouse limb.
    Zhang Z; Yu X; Zhang Y; Geronimo B; Lovlie A; Fromm SH; Chen Y
    Dev Biol; 2000 Apr; 220(2):154-67. PubMed ID: 10753507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.