BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15033453)

  • 1. Functional comparison of single- and double-stranded siRNAs in mammalian cells.
    Xu Y; Linde A; Larsson O; Thormeyer D; Elmen J; Wahlestedt C; Liang Z
    Biochem Biophys Res Commun; 2004 Apr; 316(3):680-7. PubMed ID: 15033453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization.
    Sioud M
    J Mol Biol; 2005 May; 348(5):1079-90. PubMed ID: 15854645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing.
    Choi I; Cho BR; Kim D; Miyagawa S; Kubo T; Kim JY; Park CG; Hwang WS; Lee JS; Ahn C
    J Biotechnol; 2005 Nov; 120(3):251-61. PubMed ID: 16095743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of bcr-abl and/or c-abl gene expression by small interfering, double-stranded RNAs: cross-talk with cell proliferation factors and other oncogenes.
    Ohba H; Zhelev Z; Bakalova R; Ewis A; Omori T; Ishikawa M; Shinohara Y; Baba Y
    Cancer; 2004 Sep; 101(6):1390-403. PubMed ID: 15368327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing.
    Myers JW; Jones JT; Meyer T; Ferrell JE
    Nat Biotechnol; 2003 Mar; 21(3):324-8. PubMed ID: 12592410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of gene function in somatic mammalian cells using small interfering RNAs.
    Elbashir SM; Harborth J; Weber K; Tuschl T
    Methods; 2002 Feb; 26(2):199-213. PubMed ID: 12054897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.
    Lee NS; Dohjima T; Bauer G; Li H; Li MJ; Ehsani A; Salvaterra P; Rossi J
    Nat Biotechnol; 2002 May; 20(5):500-5. PubMed ID: 11981565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells.
    Hoshika S; Minakawa N; Kamiya H; Harashima H; Matsuda A
    FEBS Lett; 2005 Jun; 579(14):3115-8. PubMed ID: 15919084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo.
    Griesenbach U; Kitson C; Escudero Garcia S; Farley R; Singh C; Somerton L; Painter H; Smith RL; Gill DR; Hyde SC; Chow YH; Hu J; Gray M; Edbrooke M; Ogilvie V; MacGregor G; Scheule RK; Cheng SH; Caplen NJ; Alton EW
    Respir Res; 2006 Feb; 7(1):26. PubMed ID: 16480492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing and utilization of siRNAs targeting RNA binding proteins.
    Kim DH; Behlke M; Rossi JJ
    Methods Mol Biol; 2008; 488():367-81. PubMed ID: 18982303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasmid-based system for expressing small interfering RNA libraries in mammalian cells.
    Kaykas A; Moon RT
    BMC Cell Biol; 2004 Apr; 5():16. PubMed ID: 15119963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of monocyte chemoattractant protein-1 by the oxidized lipid, 13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells via nuclear factor-kappa B (NF-kappa B).
    Dwarakanath RS; Sahar S; Reddy MA; Castanotto D; Rossi JJ; Natarajan R
    J Mol Cell Cardiol; 2004 Apr; 36(4):585-95. PubMed ID: 15081318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Detection of RNA interference in nasopharyngeal carcinoma cell lines using reporter genes].
    Yin ZH; Ren CP; Li F; Jiang WH; Yang XY; Feng XL; Yao KT
    Ai Zheng; 2005 Mar; 24(3):371-5. PubMed ID: 15757546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ analysis of single-stranded and duplex siRNA integrity in living cells.
    Raemdonck K; Remaut K; Lucas B; Sanders NN; Demeester J; De Smedt SC
    Biochemistry; 2006 Sep; 45(35):10614-23. PubMed ID: 16939213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interference (RNAi) with RNase III-prepared siRNAs.
    Yang D; Goga A; Bishop JM
    Methods Mol Biol; 2004; 252():471-82. PubMed ID: 15017072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.
    Miyagishi M; Taira K
    Nat Biotechnol; 2002 May; 20(5):497-500. PubMed ID: 11981564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of assembly of siRNA elements into RNA-induced silencing complex by fork-siRNA duplex carrying nucleotide mismatches at the 3'- or 5'-end of the sense-stranded siRNA element.
    Ohnishi Y; Tokunaga K; Hohjoh H
    Biochem Biophys Res Commun; 2005 Apr; 329(2):516-21. PubMed ID: 15737617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring RNA interference as a therapeutic strategy for renal disease.
    Takabatake Y; Isaka Y; Mizui M; Kawachi H; Shimizu F; Ito T; Hori M; Imai E
    Gene Ther; 2005 Jun; 12(12):965-73. PubMed ID: 15729369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of modification pattern-RNAi activity relationships by using siRNAs modified with 4'-thioribonucleosides.
    Hoshika S; Minakawa N; Shionoya A; Imada K; Ogawa N; Matsuda A
    Chembiochem; 2007 Nov; 8(17):2133-8. PubMed ID: 17924376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficiency of CD40 down regulation by siRNA and antisense ODN: comparison of lipofectamine and FuGENE6.
    Ebadi P; Karimi MH; Pourfathollah AA; Saheb Ghadam Lotfi A; Soheili ZS; Samiee S; Hajati S; Nadali F; Geramizadeh B; Moazzeni SM
    Iran J Immunol; 2009 Mar; 6(1):1-11. PubMed ID: 19293472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.