BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15033460)

  • 1. An application of experimental design using mutually orthogonal Latin squares in conformational studies of peptides.
    Vengadesan K; Anbupalam T; Gautham N
    Biochem Biophys Res Commun; 2004 Apr; 316(3):731-7. PubMed ID: 15033460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational studies on enkephalins using the MOLS technique.
    Vengadesan K; Gautham N
    Biopolymers; 2004 Aug; 74(6):476-94. PubMed ID: 15274091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods of peptide conformation studies.
    Bierzyński A
    Acta Biochim Pol; 2001; 48(4):1091-9. PubMed ID: 11995971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: application to peptide structures.
    Vengadesan K; Gautham N
    Biophys J; 2003 May; 84(5):2897-906. PubMed ID: 12719222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOLS--a program to explore the potential energy surface of a peptide and locate its low energy conformations.
    Prasad PA; Vengadesan K; Gautham N
    In Silico Biol; 2005; 5(4):401-5. PubMed ID: 16268784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction using mutually orthogonal Latin squares and a genetic algorithm.
    Arunachalam J; Kanagasabai V; Gautham N
    Biochem Biophys Res Commun; 2006 Apr; 342(2):424-33. PubMed ID: 16487483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate automatic protein models.
    Pavelcik F
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1535-44. PubMed ID: 15333923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using free energy perturbation to predict effects of changing force field parameters on computed conformational equilibriums of peptides.
    Cao Z; Liu H
    J Chem Phys; 2008 Jul; 129(1):015101. PubMed ID: 18624500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation families of protein fragments in multidimensional torsion-angle space.
    Pavelcik F; Pavelcikova P
    Acta Crystallogr D Biol Crystallogr; 2007 Nov; 63(Pt 11):1162-8. PubMed ID: 18007031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic peptide aggregation: exploration of conformational dynamics in aqueous solution by computational techniques.
    Duce C; Monti S; Solaro R; Tiné MR
    J Phys Chem B; 2007 Feb; 111(5):1165-75. PubMed ID: 17266271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling.
    Arun Prasad P; Gautham N
    J Comput Aided Mol Des; 2008 Nov; 22(11):815-29. PubMed ID: 18465087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal-group effects on the folding behavior of selected beta-peptides.
    Gee PJ; van Gunsteren WF
    Proteins; 2006 Apr; 63(1):136-43. PubMed ID: 16435370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray studies on ligands.
    Deschamps JR; Flippen-Anderson JL; George C
    Biopolymers; 2002; 66(5):287-93. PubMed ID: 12539257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational properties of hybrid peptides containing alpha- and omega-amino acids.
    Roy RS; Balaram P
    J Pept Res; 2004 Mar; 63(3):279-89. PubMed ID: 15049840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the initial conformational transition of a photomodulable peptide.
    Andruniów T; Fantacci S; De Angelis F; Ferré N; Olivucci M
    Angew Chem Int Ed Engl; 2005 Sep; 44(37):6077-81. PubMed ID: 16108079
    [No Abstract]   [Full Text] [Related]  

  • 19. Modeling an active conformation for linear peptides and design of a competitive inhibitor for HMG-CoA reductase.
    Pak VV; Koo M; Kim MJ; Yang HJ; Yun L; Kwon DY
    J Mol Recognit; 2008; 21(4):224-32. PubMed ID: 18446881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.