BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15033524)

  • 1. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice.
    Richly E; Leister D
    Gene; 2004 Mar; 329():11-6. PubMed ID: 15033524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the secretome of rice calli.
    Cho WK; Chen XY; Chu H; Rim Y; Kim S; Kim ST; Kim SW; Park ZY; Kim JY
    Physiol Plant; 2009 Apr; 135(4):331-41. PubMed ID: 19226311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis.
    Ishikawa M; Fujiwara M; Sonoike K; Sato N
    Plant Cell Physiol; 2009 Apr; 50(4):773-88. PubMed ID: 19224954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of rice nuclear proteome analysis to the identification of evolutionarily conserved and glucose-responsive nuclear proteins.
    Aki T; Yanagisawa S
    J Proteome Res; 2009 Aug; 8(8):3912-24. PubMed ID: 19621931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps.
    Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS
    J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility.
    Ströher E; Dietz KJ
    Physiol Plant; 2008 Jul; 133(3):566-83. PubMed ID: 18433418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups.
    Sato N; Ishikawa M; Fujiwara M; Sonoike K
    Genome Inform; 2005; 16(2):56-68. PubMed ID: 16901089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress.
    Piippo M; Allahverdiyeva Y; Paakkarinen V; Suoranta UM; Battchikova N; Aro EM
    Physiol Genomics; 2006 Mar; 25(1):142-52. PubMed ID: 16403842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice.
    Ito Y; Katsura K; Maruyama K; Taji T; Kobayashi M; Seki M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell Physiol; 2006 Jan; 47(1):141-53. PubMed ID: 16284406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting.
    Bhushan S; Kuhn C; Berglund AK; Roth C; Glaser E
    FEBS Lett; 2006 Jul; 580(16):3966-72. PubMed ID: 16806197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts.
    Sokolenko A; Pojidaeva E; Zinchenko V; Panichkin V; Glaser VM; Herrmann RG; Shestakov SV
    Curr Genet; 2002 Aug; 41(5):291-310. PubMed ID: 12185496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma membrane proteome in Arabidopsis and rice.
    Komatsu S
    Proteomics; 2008 Oct; 8(19):4137-45. PubMed ID: 18763705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD.
    Nakanishi H; Suzuki K; Kabeya Y; Miyagishima SY
    Curr Biol; 2009 Jan; 19(2):151-6. PubMed ID: 19135368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.
    Myouga F; Motohashi R; Kuromori T; Nagata N; Shinozaki K
    Plant J; 2006 Oct; 48(2):249-60. PubMed ID: 16995899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    Zybailov B; Rutschow H; Friso G; Rudella A; Emanuelsson O; Sun Q; van Wijk KJ
    PLoS One; 2008 Apr; 3(4):e1994. PubMed ID: 18431481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative phylogenetic analysis of the rice and Arabidopsis PHD-finger proteins].
    Feng Y; Liu QP; Xue QZ
    Yi Chuan Xue Bao; 2004 Nov; 31(11):1284-93. PubMed ID: 15651682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).
    Wang D; Pei K; Fu Y; Sun Z; Li S; Liu H; Tang K; Han B; Tao Y
    Gene; 2007 Jun; 394(1-2):13-24. PubMed ID: 17408882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP).
    Abe M; Fujiwara M; Kurotani K; Yokoi S; Shimamoto K
    Plant Cell Physiol; 2008 Mar; 49(3):420-32. PubMed ID: 18296724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.