BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 15034249)

  • 1. The role of integrins in the modulation of neurotransmitter release from motor nerve terminals by stretch and hypertonicity.
    Grinnell AD; Chen BM; Kashani A; Lin J; Suzuki K; Kidokoro Y
    J Neurocytol; 2003; 32(5-8):489-503. PubMed ID: 15034249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of transmitter release by muscle length in frog motor nerve terminals. Dynamics of the effect and the role of integrin-ECM interactions.
    Chen BM; Grinnell AD
    Adv Second Messenger Phosphoprotein Res; 1994; 29():383-98. PubMed ID: 7848723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals.
    Chen BM; Grinnell AD
    J Neurosci; 1997 Feb; 17(3):904-16. PubMed ID: 8994045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins.
    Kashani AH; Chen BM; Grinnell AD
    J Physiol; 2001 Jan; 530(Pt 2):243-52. PubMed ID: 11208972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrins and modulation of transmitter release from motor nerve terminals by stretch.
    Chen BM; Grinnell AD
    Science; 1995 Sep; 269(5230):1578-80. PubMed ID: 7667637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab3A deletion selectively reduces spontaneous neurotransmitter release at the mouse neuromuscular synapse.
    Sons MS; Plomp JJ
    Brain Res; 2006 May; 1089(1):126-34. PubMed ID: 16631140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertonicity-induced transmitter release at Drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A.
    Suzuki K; Grinnell AD; Kidokoro Y
    J Physiol; 2002 Jan; 538(Pt 1):103-19. PubMed ID: 11773320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential modulation of evoked and spontaneous glycine release from rat spinal cord glycinergic terminals by the cyclic AMP/protein kinase A transduction cascade.
    Katsurabayashi S; Kubota H; Moorhouse AJ; Akaike N
    J Neurochem; 2004 Nov; 91(3):657-66. PubMed ID: 15485496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.
    Brooke RE; Moores TS; Morris NP; Parson SH; Deuchars J
    Eur J Neurosci; 2004 Dec; 20(12):3313-21. PubMed ID: 15610163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse.
    Coleman WL; Bill CA; Bykhovskaia M
    Neuroscience; 2007 Aug; 148(1):1-6. PubMed ID: 17640821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PKC modulation of transmitter release by SNAP-25 at sensory-to-motor synapses in aplysia.
    Houeland G; Nakhost A; Sossin WS; Castellucci VF
    J Neurophysiol; 2007 Jan; 97(1):134-43. PubMed ID: 16971689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition.
    Thomson PC; Lavidis NA; Robinson J; Bennett MR
    Philos Trans R Soc Lond B Biol Sci; 1995 Aug; 349(1328):197-214. PubMed ID: 8668726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic cross-talk of beta-adrenoreceptor and 5-hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals.
    Wang SJ; Coutinho V; Sihra TS
    Br J Pharmacol; 2002 Dec; 137(8):1371-9. PubMed ID: 12466248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse.
    Kidokoro Y
    Neurosignals; 2003; 12(1):13-30. PubMed ID: 12624525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exocytosis and endocytosis of synaptic vesicles and functional roles of vesicle pools: lessons from the Drosophila neuromuscular junction.
    Kuromi H; Kidokoro Y
    Neuroscientist; 2005 Apr; 11(2):138-47. PubMed ID: 15746382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae.
    He T; Singh V; Rumpal N; Lnenicka GA
    Neuroscience; 2009 Apr; 159(4):1283-91. PubMed ID: 19409207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the honokiol inhibition of evoked glutamate release from glutamatergic nerve terminals of the rat cerebral cortex.
    Sy HN; Wu SL; Wang WF; Wang SJ
    Synapse; 2008 Dec; 62(12):890-901. PubMed ID: 18792989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release?
    Glitsch MD
    Cell Calcium; 2008 Jan; 43(1):9-15. PubMed ID: 17382386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase C activity affects neurotransmitter release at polyinnervated neuromuscular synapses.
    Santafé MM; Garcia N; Lanuza MA; Tomàs J
    J Neurosci Res; 2007 May; 85(7):1449-57. PubMed ID: 17394262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.