These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1073 related articles for article (PubMed ID: 15034619)
1. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
2. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751 [TBL] [Abstract][Full Text] [Related]
3. All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction. Ishida T; Fedorov DG; Kitaura K J Phys Chem B; 2006 Jan; 110(3):1457-63. PubMed ID: 16471697 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of claisen and cope rearrangements catalyzed by chorismate mutase. An insight into enzymatic efficiency: transition state stabilization or substrate preorganization? Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J J Am Chem Soc; 2004 Jan; 126(1):311-9. PubMed ID: 14709097 [TBL] [Abstract][Full Text] [Related]
6. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions. Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152 [TBL] [Abstract][Full Text] [Related]
7. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis. Hur S; Bruice TC J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937 [TBL] [Abstract][Full Text] [Related]
8. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase. Ishida T J Chem Phys; 2008 Sep; 129(12):125105. PubMed ID: 19045066 [TBL] [Abstract][Full Text] [Related]
9. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase. Guimarães CR; Repasky MP; Chandrasekhar J; Tirado-Rives J; Jorgensen WL J Am Chem Soc; 2003 Jun; 125(23):6892-9. PubMed ID: 12783541 [TBL] [Abstract][Full Text] [Related]
11. The catalytic power of enzymes: conformational selection or transition state stabilization? Giraldo J; Roche D; Rovira X; Serra J FEBS Lett; 2006 Apr; 580(9):2170-7. PubMed ID: 16616138 [TBL] [Abstract][Full Text] [Related]
12. Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization. Strajbl M; Shurki A; Kato M; Warshel A J Am Chem Soc; 2003 Aug; 125(34):10228-37. PubMed ID: 12926945 [TBL] [Abstract][Full Text] [Related]
13. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants). Hur S; Bruice TC J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735 [TBL] [Abstract][Full Text] [Related]
14. Enzymes do what is expected (chalcone isomerase versus chorismate mutase). Hur S; Bruice TC J Am Chem Soc; 2003 Feb; 125(6):1472-3. PubMed ID: 12568595 [TBL] [Abstract][Full Text] [Related]
15. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase. Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514 [TBL] [Abstract][Full Text] [Related]
16. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction. Ishida T J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479 [TBL] [Abstract][Full Text] [Related]
17. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
18. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase. van der Kamp MW; Perruccio F; Mulholland AJ J Mol Graph Model; 2007 Oct; 26(3):676-90. PubMed ID: 17493853 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
20. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. Hu P; Zhang Y J Am Chem Soc; 2006 Feb; 128(4):1272-8. PubMed ID: 16433545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]