These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15034945)

  • 1. Automatic kernel regression modelling using combined leave-one-out test score and regularised orthogonal least squares.
    Hong X; Chen S; Sharkey PM
    Int J Neural Syst; 2004 Feb; 14(1):27-37. PubMed ID: 15034945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust nonlinear identification algorithm using PRESS statistic and forward regression.
    Hong X; Sharkey PM; Warwick K
    IEEE Trans Neural Netw; 2003; 14(2):454-8. PubMed ID: 18238030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization.
    Chen S; Hong X; Harris CJ; Sharkey PM
    IEEE Trans Syst Man Cybern B Cybern; 2004 Apr; 34(2):898-911. PubMed ID: 15376838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimally regularised kernel Fisher discriminant classification.
    Saadi K; Talbot NL; Cawley GC
    Neural Netw; 2007 Sep; 20(7):832-41. PubMed ID: 17600674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel extended kernel recursive least squares algorithm.
    Zhu P; Chen B; Príncipe JC
    Neural Netw; 2012 Aug; 32():349-57. PubMed ID: 22326204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization.
    Chen S; Hong X; Harris CJ
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1708-17. PubMed ID: 15462438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines.
    Cawley GC; Talbot NL
    Neural Netw; 2004 Dec; 17(10):1467-75. PubMed ID: 15541948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization.
    Hong X; Chen S; Gao J; Harris CJ
    IEEE Trans Cybern; 2015 Dec; 45(12):2925-36. PubMed ID: 25643422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant vector learning to construct sparse kernel regression models.
    Gao J; Shi D; Liu X
    Neural Netw; 2007 Sep; 20(7):791-8. PubMed ID: 17604953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kernel-based two-class classifier for imbalanced data sets.
    Hong X; Chen S; Harris CJ
    IEEE Trans Neural Netw; 2007 Jan; 18(1):28-41. PubMed ID: 17278459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear model identification and adaptive model predictive control using neural networks.
    Akpan VA; Hassapis GD
    ISA Trans; 2011 Apr; 50(2):177-94. PubMed ID: 21281932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model selection method for nonlinear system identification based FMRI effective connectivity analysis.
    Li X; Coyle D; Maguire L; McGinnity TM; Benali H
    IEEE Trans Med Imaging; 2011 Jul; 30(7):1365-80. PubMed ID: 21335308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning.
    Mizutani E; Demmel JW
    Neural Netw; 2003; 16(5-6):745-53. PubMed ID: 12850030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kernel least-squares models using updates of the pseudoinverse.
    Andelić E; Schafföner M; Katz M; Krüger SE; Wendemuth A
    Neural Comput; 2006 Dec; 18(12):2928-35. PubMed ID: 17052152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors.
    Jalali-Heravi M; Kyani A
    Eur J Med Chem; 2007 May; 42(5):649-59. PubMed ID: 17316919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding pitfalls in L1-regularised inference of gene networks.
    Tjärnberg A; Nordling TE; Studham M; Nelander S; Sonnhammer EL
    Mol Biosyst; 2015 Jan; 11(1):287-96. PubMed ID: 25377664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces.
    Rodríguez-Bermúdez G; García-Laencina PJ; Roca-Dorda J
    Int J Neural Syst; 2013 Aug; 23(4):1350015. PubMed ID: 23746288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of genetic algorithm-kernel partial least square as a novel non-linear feature selection method: partitioning of drug molecules.
    Noorizadeh H; Sobhan Ardakani S; Ahmadi T; Mortazavi SS; Noorizadeh M
    Drug Test Anal; 2013 Feb; 5(2):89-95. PubMed ID: 21438162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.