BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15035338)

  • 1. Motor evoked potential monitoring for spinal cord and brain stem surgery.
    Sala F; Lanteri P; Bricolo A
    Adv Tech Stand Neurosurg; 2004; 29():133-69. PubMed ID: 15035338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how?
    Sala F; Krzan MJ; Deletis V
    Childs Nerv Syst; 2002 Jul; 18(6-7):264-87. PubMed ID: 12172930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss?
    Sala F; Manganotti P; Tramontano V; Bricolo A; Gerosa M
    Neurophysiol Clin; 2007 Dec; 37(6):399-406. PubMed ID: 18083495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts.
    Deletis V; Sala F
    Clin Neurophysiol; 2008 Feb; 119(2):248-64. PubMed ID: 18053764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct.
    Kothbauer K; Deletis V; Epstein FJ
    Pediatr Neurosurg; 1997 May; 26(5):247-54. PubMed ID: 9440494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring.
    Morota N; Ihara S; Deletis V
    Childs Nerv Syst; 2010 Apr; 26(4):513-21. PubMed ID: 20143075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative preservation of corticospinal function in the brainstem.
    Neuloh G; Bogucki J; Schramm J
    J Neurol Neurosurg Psychiatry; 2009 Apr; 80(4):417-22. PubMed ID: 19074927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem Surgery: Functional Surgical Anatomy with the Use of an Advanced Modern Intraoperative Neurophysiological Procedure.
    Morota N; Deletis V
    Adv Tech Stand Neurosurg; 2023; 48():21-55. PubMed ID: 37770680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative neurophysiology of the motor system in children: a tailored approach.
    Sala F; Manganotti P; Grossauer S; Tramontanto V; Mazza C; Gerosa M
    Childs Nerv Syst; 2010 Apr; 26(4):473-90. PubMed ID: 20145936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping and monitoring of brainstem surgery.
    Kodama K; Kothbauer KF; Deletis V
    Handb Clin Neurol; 2022; 186():151-161. PubMed ID: 35772884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator.
    Barzilai O; Lidar Z; Constantini S; Salame K; Bitan-Talmor Y; Korn A
    J Neurosurg Spine; 2017 Aug; 27(2):161-168. PubMed ID: 28524753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function.
    Sarnthein J; Bozinov O; Melone AG; Bertalanffy H
    Acta Neurochir (Wien); 2011 Sep; 153(9):1753-9. PubMed ID: 21660421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method of neurophysiological brainstem mapping in neurosurgery.
    Fava E; Colistra D; Fragale M; Cenzato M
    J Neurosci Methods; 2024 May; 405():110096. PubMed ID: 38428822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients.
    Kodama K; Javadi M; Seifert V; Szelényi A
    J Neurosurg; 2014 Dec; 121(6):1453-61. PubMed ID: 25216065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor.
    Gandhi R; Curtis CM; Cohen-Gadol AA
    J Neurosurg Spine; 2015 Feb; 22(2):205-10. PubMed ID: 25431960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurophysiological detection of impending spinal cord injury during scoliosis surgery.
    Schwartz DM; Auerbach JD; Dormans JP; Flynn J; Drummond DS; Bowe JA; Laufer S; Shah SA; Bowen JR; Pizzutillo PD; Jones KJ; Drummond DS
    J Bone Joint Surg Am; 2007 Nov; 89(11):2440-9. PubMed ID: 17974887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative neurophysiology in intramedullary spinal cord tumor surgery.
    Sala F; Skrap B; Kothbauer KF; Deletis V
    Handb Clin Neurol; 2022; 186():229-244. PubMed ID: 35772888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing lower cranial nerve injuries during fourth ventricle tumor resection by utilizing intraoperative neurophysiological monitoring.
    Jahangiri FR; Minhas M; Jane J
    Neurodiagn J; 2012 Dec; 52(4):320-32. PubMed ID: 23301282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations.
    Quinones-Hinojosa A; Gulati M; Lyon R; Gupta N; Yingling C
    Neurosurgery; 2002 Nov; 51(5):1199-206; discussion 1206-7. PubMed ID: 12383365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The value of intraoperative motor evoked potential monitoring during surgical intervention for thoracic idiopathic spinal cord herniation.
    Novak K; Widhalm G; de Camargo AB; Perin N; Jallo G; Knosp E; Deletis V
    J Neurosurg Spine; 2012 Feb; 16(2):114-26. PubMed ID: 22117142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.