These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15035480)

  • 21. Widening of Long-range femtosecond laser filaments in turbulent air.
    Ma YY; Lu X; Xi TT; Gong QH; Zhang J
    Opt Express; 2008 Jun; 16(12):8332-41. PubMed ID: 18545547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma.
    Lontano M; Murusidze I
    Opt Express; 2003 Feb; 11(3):248-58. PubMed ID: 19461730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air.
    Alexeev I; Ting AC; Gordon DF; Briscoe E; Hafizi B; Sprangle P
    Opt Lett; 2005 Jun; 30(12):1503-5. PubMed ID: 16007788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.
    Sahai AA; Tsung FS; Tableman AR; Mori WB; Katsouleas TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043105. PubMed ID: 24229291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air.
    Mlejnek M; Wright E; Moloney J
    Opt Express; 1999 Mar; 4(7):223-8. PubMed ID: 19396277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous emergence of pulses with constant carrier-envelope phase in femtosecond filamentation.
    Faccio D; Lotti A; Kolesik M; Moloney JV; Tzortzakis S; Couairon A; Di Trapani P
    Opt Express; 2008 Jul; 16(15):11103-14. PubMed ID: 18648424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Filament conductivity enhancement through nonlinear beam interaction.
    Reyes D; Peña J; Walasik W; Litchinitser N; Fairchild SR; Richardson M
    Opt Express; 2020 Aug; 28(18):26764-26773. PubMed ID: 32906944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air.
    Li YT; Xi TT; Hao ZQ; Zhang Z; Peng XY; Li K; Jin Z; Zheng ZY; Yu QZ; Lu X; Zhang J
    Opt Express; 2007 Dec; 15(26):17973-9. PubMed ID: 19551094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of extended plasma channels in air using femtosecond Bessel beams.
    Polynkin P; Kolesik M; Roberts A; Faccio D; Di Trapani P; Moloney J
    Opt Express; 2008 Sep; 16(20):15733-40. PubMed ID: 18825212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses.
    Geints YE; Zemlyanov AA; Kabanov AM; Bykova EE; Apeksimov DV; Bukin OA; Sokolova EB; Golik SS; Ilyin AA
    Appl Opt; 2011 Sep; 50(27):5291-8. PubMed ID: 21947048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-filament-induced corona discharges and remote measurements of electric fields.
    Sugiyama K; Fujii T; Miki M; Yamaguchi M; Zhidkov A; Hotta E; Nemoto K
    Opt Lett; 2009 Oct; 34(19):2964-6. PubMed ID: 19794783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser filaments generated and transmitted in highly turbulent air.
    Ackermann R; Méjean G; Kasparian J; Yu J; Salmon E; Wolf JP
    Opt Lett; 2006 Jan; 31(1):86-8. PubMed ID: 16419886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionization-induced self-compression of tightly focused femtosecond laser pulses.
    He ZH; Nees JA; Hou B; Krushelnick K; Thomas AG
    Phys Rev Lett; 2014 Dec; 113(26):263904. PubMed ID: 25615338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-guided propagation of femtosecond light pulses in water.
    Dubietis A; Tamosauskas G; Diomin I; Varanavicius A
    Opt Lett; 2003 Jul; 28(14):1269-71. PubMed ID: 12885043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limitations in ionization-induced compression of femtosecond laser pulses due to spatio-temporal couplings.
    Beaurepaire B; Guénot D; Vernier A; Böhle F; Perrier M; Jullien A; Lopez-Martens R; Lifschitz A; Faure J
    Opt Express; 2016 May; 24(9):9693-705. PubMed ID: 27137583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses.
    Aközbek N; Iwasaki A; Becker A; Scalora M; Chin SL; Bowden CM
    Phys Rev Lett; 2002 Sep; 89(14):143901. PubMed ID: 12366048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate.
    Fu Y; Xiong H; Xu H; Yao J; Zeng B; Chu W; Cheng Y; Xu Z; Liu W; Chin SL
    Opt Lett; 2009 Dec; 34(23):3752-4. PubMed ID: 19953184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of light filaments generated by femtosecond laser pulses in air.
    Xi TT; Lu X; Zhang J
    Phys Rev Lett; 2006 Jan; 96(2):025003. PubMed ID: 16486590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct imaging of the acoustic waves generated by femtosecond filaments in air.
    Wahlstrand JK; Jhajj N; Rosenthal EW; Zahedpour S; Milchberg HM
    Opt Lett; 2014 Mar; 39(5):1290-3. PubMed ID: 24690729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic spatial replenishment of femtosecond pulses propagating in air.
    Mlejnek M; Wright EM; Moloney JV
    Opt Lett; 1998 Mar; 23(5):382-4. PubMed ID: 18084519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.