BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 15035604)

  • 1. Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium.
    Vargo MA; Nguyen L; Colman RF
    Biochemistry; 2004 Mar; 43(12):3327-35. PubMed ID: 15035604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytically active monomer of class mu glutathione transferase from rat.
    Hearne JL; Colman RF
    Biochemistry; 2006 May; 45(19):5974-84. PubMed ID: 16681369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communication between the two active sites of glutathione S-transferase A1-1, probed using wild-type-mutant heterodimers.
    Misquitta SA; Colman RF
    Biochemistry; 2005 Jun; 44(24):8608-19. PubMed ID: 15952767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of alpha class subunits generating a functional glutathione transferase A1-4 heterodimer.
    Gustafsson A; Nilsson LO; Mannervik B
    J Mol Biol; 2002 Feb; 316(2):395-406. PubMed ID: 11851347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterodimers of wild-type and subunit interface mutant enzymes of glutathione S-transferase A1-1: interactive or independent active sites?
    Vargo MA; Colman RF
    Protein Sci; 2004 Jun; 13(6):1586-93. PubMed ID: 15152091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1.
    Widersten M; Björnestedt R; Mannervik B
    Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional studies of single-nucleotide polymorphic variants of human glutathione transferase T1-1 involving residues in the dimer interface.
    Josephy PD; Pan D; Ianni MD; Mannervik B
    Arch Biochem Biophys; 2011 Sep; 513(2):87-93. PubMed ID: 21781954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid substitutions at positions 207 and 221 contribute to catalytic differences between murine glutathione S-transferase Al-1 and A2-2 toward (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene.
    Xia H; Gu Y; Pan SS; Ji X; Singh SV
    Biochemistry; 1999 Aug; 38(31):9824-30. PubMed ID: 10433688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105.
    Johansson AS; Stenberg G; Widersten M; Mannervik B
    J Mol Biol; 1998 May; 278(3):687-98. PubMed ID: 9600848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural contributions of delta class glutathione transferase active-site residues to catalysis.
    Wongsantichon J; Robinson RC; Ketterman AJ
    Biochem J; 2010 Apr; 428(1):25-32. PubMed ID: 20196771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive core region in the structure of glutathione S-transferases.
    Wongsantichon J; Harnnoi T; Ketterman AJ
    Biochem J; 2003 Aug; 373(Pt 3):759-65. PubMed ID: 12708968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifting substrate specificity of human glutathione transferase (from class Pi to class alpha) by a single point mutation.
    Nuccetelli M; Mazzetti AP; Rossjohn J; Parker MW; Board P; Caccuri AM; Federici G; Ricci G; Lo Bello M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):184-9. PubMed ID: 9813167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1.
    Chern MK; Wu TC; Hsieh CH; Chou CC; Liu LF; Kuan IC; Yeh YH; Hsiao CD; Tam MF
    J Mol Biol; 2000 Jul; 300(5):1257-69. PubMed ID: 10903867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase.
    Dietze EC; Wang RW; Lu AY; Atkins WM
    Biochemistry; 1996 May; 35(21):6745-53. PubMed ID: 8639625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.
    Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ
    J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different roles of functional residues in the hydrophobic binding site of two sweet orange tau glutathione S-transferases.
    Lo Piero AR; Mercurio V; Puglisi I; Petrone G
    FEBS J; 2010 Jan; 277(1):255-62. PubMed ID: 19954490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY; Wang XR
    FEBS Lett; 2005 May; 579(12):2657-62. PubMed ID: 15862305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability.
    Alves CS; Kuhnert DC; Sayed Y; Dirr HW
    Biochem J; 2006 Jan; 393(Pt 2):523-8. PubMed ID: 16190865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for catalytic differences between alpha class human glutathione transferases hGSTA1-1 and hGSTA2-2 for glutathione conjugation of environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide.
    Singh SV; Varma V; Zimniak P; Srivastava SK; Marynowski SW; Desai D; Amin S; Ji X
    Biochemistry; 2004 Aug; 43(30):9708-15. PubMed ID: 15274625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.