These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 15035616)
1. Multiconformational states in phosphoglycerate dehydrogenase. Bell JK; Grant GA; Banaszak LJ Biochemistry; 2004 Mar; 43(12):3450-8. PubMed ID: 15035616 [TBL] [Abstract][Full Text] [Related]
2. Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Thompson JR; Bell JK; Bratt J; Grant GA; Banaszak LJ Biochemistry; 2005 Apr; 44(15):5763-73. PubMed ID: 15823035 [TBL] [Abstract][Full Text] [Related]
3. Removal of the tryptophan 139 side chain in Escherichia coli D-3-phosphoglycerate dehydrogenase produces a dimeric enzyme without cooperative effects. Grant GA; Xu XL; Hu Z Arch Biochem Biophys; 2000 Mar; 375(1):171-4. PubMed ID: 10683264 [TBL] [Abstract][Full Text] [Related]
4. A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme. Grant GA; Schuller DJ; Banaszak LJ Protein Sci; 1996 Jan; 5(1):34-41. PubMed ID: 8771194 [TBL] [Abstract][Full Text] [Related]
5. Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase. Bustos-Jaimes I; Ramírez-Costa M; De Anda-Aguilar L; Hinojosa-Ocaña P; Calcagno ML Biochemistry; 2005 Feb; 44(4):1127-35. PubMed ID: 15667206 [TBL] [Abstract][Full Text] [Related]
6. De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal. Bell JK; Pease PJ; Bell JE; Grant GA; Banaszak LJ Eur J Biochem; 2002 Sep; 269(17):4176-84. PubMed ID: 12199695 [TBL] [Abstract][Full Text] [Related]
7. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Peters-Wendisch P; Netzer R; Eggeling L; Sahm H Appl Microbiol Biotechnol; 2002 Dec; 60(4):437-41. PubMed ID: 12466884 [TBL] [Abstract][Full Text] [Related]
8. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism. Liberles JS; Thórólfsson M; Martínez A Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190 [TBL] [Abstract][Full Text] [Related]
10. Mutating the tight-dimer interface of dihydrodipicolinate synthase disrupts the enzyme quaternary structure: toward a monomeric enzyme. Pearce FG; Dobson RC; Weber A; Lane LA; McCammon MG; Squire MA; Perugini MA; Jameson GB; Robinson CV; Gerrard JA Biochemistry; 2008 Nov; 47(46):12108-17. PubMed ID: 18937497 [TBL] [Abstract][Full Text] [Related]
11. Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Tabatabaie L; de Koning TJ; Geboers AJ; van den Berg IE; Berger R; Klomp LW Hum Mutat; 2009 May; 30(5):749-56. PubMed ID: 19235232 [TBL] [Abstract][Full Text] [Related]
12. C-terminal tail derived from the neighboring subunit is critical for the activity of Thermoplasma acidophilum D-aldohexose dehydrogenase. Nishioka T; Yasutake Y; Nishiya Y; Tamura N; Tamura T Proteins; 2009 Mar; 74(4):801-7. PubMed ID: 19089950 [TBL] [Abstract][Full Text] [Related]
13. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL Biochemistry; 2005 Dec; 44(51):16844-52. PubMed ID: 16363798 [TBL] [Abstract][Full Text] [Related]
14. Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. Perona JJ; Martin AM J Mol Biol; 1997 Oct; 273(1):207-25. PubMed ID: 9367757 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. Stenmark P; Moche M; Gurmu D; Nordlund P J Mol Biol; 2007 Oct; 373(1):48-64. PubMed ID: 17765262 [TBL] [Abstract][Full Text] [Related]
16. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Schuller DJ; Grant GA; Banaszak LJ Nat Struct Biol; 1995 Jan; 2(1):69-76. PubMed ID: 7719856 [TBL] [Abstract][Full Text] [Related]
17. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
18. Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. Kaplun A; Vyazmensky M; Zherdev Y; Belenky I; Slutzker A; Mendel S; Barak Z; Chipman DM; Shaanan B J Mol Biol; 2006 Mar; 357(3):951-63. PubMed ID: 16458324 [TBL] [Abstract][Full Text] [Related]
19. Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases. Maurus R; Nguyen NT; Stokell DJ; Ayed A; Hultin PG; Duckworth HW; Brayer GD Biochemistry; 2003 May; 42(19):5555-65. PubMed ID: 12741811 [TBL] [Abstract][Full Text] [Related]
20. Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions. Kavanaugh JS; Rogers PH; Arnone A Biochemistry; 2005 Apr; 44(16):6101-21. PubMed ID: 15835899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]