BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15035719)

  • 1. Rapid dipicolinic acid extraction from Bacillus spores detected by surface-enhanced Raman spectroscopy.
    Farquharson S; Gift AD; Maksymiuk P; Inscore FE
    Appl Spectrosc; 2004 Mar; 58(3):351-4. PubMed ID: 15035719
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells.
    Zhang P; Kong L; Setlow P; Li YQ
    Opt Lett; 2010 Oct; 35(20):3321-3. PubMed ID: 20967053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy.
    Zhang X; Young MA; Lyandres O; Van Duyne RP
    J Am Chem Soc; 2005 Mar; 127(12):4484-9. PubMed ID: 15783231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid.
    Guingab JD; Lauly B; Smith BW; Omenetto N; Winefordner JD
    Talanta; 2007 Nov; 74(2):271-4. PubMed ID: 18371640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERS assay.
    Farquharson S; Shende C; Smith W; Huang H; Inscore F; Sengupta A; Sperry J; Sickler T; Prugh A; Guicheteau J
    Analyst; 2014 Dec; 139(24):6366-70. PubMed ID: 25263740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. American Chemical Society meeting. Fast, sensitive scan targets anthrax.
    Service RF
    Science; 2005 Apr; 308(5718):45. PubMed ID: 15802583
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid--towards rapid anthrax endospore detection.
    Bell SE; Mackle JN; Sirimuthu NM
    Analyst; 2005 Apr; 130(4):545-9. PubMed ID: 15776166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel technology for rapid species-specific detection of Bacillus spores.
    Krebs MD; Mansfield B; Yip P; Cohen SJ; Sonenshein AL; Hitt BA; Davis CE
    Biomol Eng; 2006 Jun; 23(2-3):119-27. PubMed ID: 16542873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
    Guicheteau J; Argue L; Emge D; Hyre A; Jacobson M; Christesen S
    Appl Spectrosc; 2008 Mar; 62(3):267-72. PubMed ID: 18339232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.
    Pestov D; Murawski RK; Ariunbold GO; Wang X; Zhi M; Sokolov AV; Sautenkov VA; Rostovtsev YV; Dogariu A; Huang Y; Scully MO
    Science; 2007 Apr; 316(5822):265-8. PubMed ID: 17431177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible and UV coherent Raman spectroscopy of dipicolinic acid.
    Pestov D; Zhi M; Sariyanni ZE; Kalugin NG; Kolomenskii AA; Murawski R; Paulus GG; Sautenkov VA; Schuessler H; Sokolov AV; Welch GR; Rostovtsev YV; Siebert T; Akimov DA; Graefe S; Kiefer W; Scully MO
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):14976-81. PubMed ID: 16217021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Raman spectroscopy of lyophilized bacterial spores.
    Shibata H; Yamashita S; Ohe M; Tani I
    Microbiol Immunol; 1986; 30(4):307-13. PubMed ID: 3088398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments.
    Kong L; Setlow P; Li YQ
    Analyst; 2012 Aug; 137(16):3683-9. PubMed ID: 22763367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of the dipicolinic acid (DPA) from spores of Bacillus stearothermophilus, B. megaterium and B. anthracis in presence of dyes.
    Gupta KG; Malik M; Bhalla VK
    Zentralbl Bakteriol Orig A; 1974 Feb; 226(2):272-7. PubMed ID: 4151214
    [No Abstract]   [Full Text] [Related]  

  • 15. A rapid approach for the detection of dipicolinic acid in bacterial spores using pyrolysis/mass spectrometry.
    Beverly MB; Basile F; Voorhees KJ; Hadfield TL
    Rapid Commun Mass Spectrom; 1996; 10(4):455-8. PubMed ID: 8721041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose.
    Cheung M; Lee WW; Cowcher DP; Goodacre R; Bell SE
    Chem Commun (Camb); 2016 Aug; 52(64):9925-8. PubMed ID: 27432481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naphthalimide-Based DNA-Coupled Hybrid Assembly for Sensing Dipicolinic Acid: A Biomarker for Bacillus anthracis Spores.
    Verma M; Kaur N; Singh N
    Langmuir; 2018 Jun; 34(22):6591-6600. PubMed ID: 29787278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of the dynamic germination of single bacterial spores using rapid Raman imaging.
    Kong L; Setlow P; Li YQ
    J Biomed Opt; 2014 Jan; 19(1):011003. PubMed ID: 23843133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy.
    Evanoff DD; Heckel J; Caldwell TP; Christensen KA; Chumanov G
    J Am Chem Soc; 2006 Oct; 128(39):12618-9. PubMed ID: 17002334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy.
    He L; D Deen B; Pagel AH; Diez-Gonzalez F; Labuza TP
    Analyst; 2013 Mar; 138(6):1657-9. PubMed ID: 23386216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.