These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray. Gagna CE; Lambert WC Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979 [TBL] [Abstract][Full Text] [Related]
3. PIER: protein interface recognition for structural proteomics. Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750 [TBL] [Abstract][Full Text] [Related]
4. Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Ansong C; Purvine SO; Adkins JN; Lipton MS; Smith RD Brief Funct Genomic Proteomic; 2008 Jan; 7(1):50-62. PubMed ID: 18334489 [TBL] [Abstract][Full Text] [Related]
5. Piecing together the structure-function puzzle: experiences in structure-based functional annotation of hypothetical proteins. Adams MA; Suits MD; Zheng J; Jia Z Proteomics; 2007 Aug; 7(16):2920-32. PubMed ID: 17639604 [TBL] [Abstract][Full Text] [Related]
6. Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. Shi W; Zhan C; Ignatov A; Manjasetty BA; Marinkovic N; Sullivan M; Huang R; Chance MR Structure; 2005 Oct; 13(10):1473-86. PubMed ID: 16216579 [TBL] [Abstract][Full Text] [Related]
7. A perfect genome annotation is within reach with the proteomics and genomics alliance. Armengaud J Curr Opin Microbiol; 2009 Jun; 12(3):292-300. PubMed ID: 19410500 [TBL] [Abstract][Full Text] [Related]
12. Survey of current protein family databases and their application in comparative, structural and functional genomics. Redfern O; Grant A; Maibaum M; Orengo C J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):97-107. PubMed ID: 15652801 [TBL] [Abstract][Full Text] [Related]
13. Predicted role for the archease protein family based on structural and sequence analysis of TM1083 and MTH1598, two proteins structurally characterized through structural genomics efforts. Canaves JM Proteins; 2004 Jul; 56(1):19-27. PubMed ID: 15162483 [TBL] [Abstract][Full Text] [Related]
14. Chemical biology approaches to probe the proteome. Ovaa H; van Leeuwen F Chembiochem; 2008 Dec; 9(18):2913-9. PubMed ID: 18972466 [TBL] [Abstract][Full Text] [Related]
15. Structural proteomics by NMR spectroscopy. Shin J; Lee W; Lee W Expert Rev Proteomics; 2008 Aug; 5(4):589-601. PubMed ID: 18761469 [TBL] [Abstract][Full Text] [Related]
16. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. Kuznetsova E; Proudfoot M; Sanders SA; Reinking J; Savchenko A; Arrowsmith CH; Edwards AM; Yakunin AF FEMS Microbiol Rev; 2005 Apr; 29(2):263-79. PubMed ID: 15808744 [TBL] [Abstract][Full Text] [Related]
18. New approaches towards integrated proteomic databases and depositories. Rohlff C Expert Rev Proteomics; 2004 Oct; 1(3):267-74. PubMed ID: 15966823 [TBL] [Abstract][Full Text] [Related]
19. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
20. Protease accessibility laddering: a proteomic tool for probing protein structure. Dokudovskaya S; Williams R; Devos D; Sali A; Chait BT; Rout MP Structure; 2006 Apr; 14(4):653-60. PubMed ID: 16615907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]