These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15037353)

  • 1. A via-point time optimization algorithm for complex sequential trajectory formation.
    Wada Y; Kawato M
    Neural Netw; 2004 Apr; 17(3):353-64. PubMed ID: 15037353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theory for cursive handwriting based on the minimization principle.
    Wada Y; Kawato M
    Biol Cybern; 1995 Jun; 73(1):3-13. PubMed ID: 7654848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement learning with via-point representation.
    Miyamoto H; Morimoto J; Doya K; Kawato M
    Neural Netw; 2004 Apr; 17(3):299-305. PubMed ID: 15037348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method.
    Park W; Chaffin DB; Martin BJ; Faraway JJ
    J Biomech; 2005 Nov; 38(11):2321-9. PubMed ID: 16154421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual information in the evolution of trajectories in discrete aiming movements.
    Lai SC; Mayer-Kress G; Newell KM
    Nonlinear Dynamics Psychol Life Sci; 2008 Jul; 12(3):241-59. PubMed ID: 18510836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational theory for movement pattern recognition based on optimal movement pattern generation.
    Wada Y; Koike Y; Vatikiotis-Bateson E; Kawato M
    Biol Cybern; 1995 Jun; 73(1):15-25. PubMed ID: 7654846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.
    Ajoudani A; Erfanian A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal coordination and control of posture and movements.
    Johansson R; Fransson PA; Magnusson M
    J Physiol Paris; 2009; 103(3-5):159-77. PubMed ID: 19671443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust time delay estimation of bioelectric signals using least absolute deviation neural network.
    Wang Z; He Z; Chen JD
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):454-62. PubMed ID: 15759575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information entropy analysis of discrete aiming movements.
    Lai SC; Mayer-Kress G; Sosnoff JJ; Newell KM
    Acta Psychol (Amst); 2005 Jul; 119(3):283-304. PubMed ID: 15939027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise.
    Iguchi N; Sakaguchi Y; Ishida F
    Biol Cybern; 2005 Apr; 92(4):219-28. PubMed ID: 15765212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.
    Ito M; Noda K; Hoshino Y; Tani J
    Neural Netw; 2006 Apr; 19(3):323-37. PubMed ID: 16618536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm.
    Zhang H; Wei Q; Luo Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):937-42. PubMed ID: 18632381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys.
    Wessberg J; Nicolelis MA
    J Cogn Neurosci; 2004; 16(6):1022-35. PubMed ID: 15298789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimality in forward dynamics simulations.
    Kaphle M; Eriksson A
    J Biomech; 2008; 41(6):1213-21. PubMed ID: 18342319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.