These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 15037506)

  • 1. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.
    Ma HW; Zhao XM; Yuan YJ; Zeng AP
    Bioinformatics; 2004 Aug; 20(12):1870-6. PubMed ID: 15037506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical modularity of nested bow-ties in metabolic networks.
    Zhao J; Yu H; Luo JH; Cao ZW; Li YX
    BMC Bioinformatics; 2006 Aug; 7():386. PubMed ID: 16916470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The connectivity structure, giant strong component and centrality of metabolic networks.
    Ma HW; Zeng AP
    Bioinformatics; 2003 Jul; 19(11):1423-30. PubMed ID: 12874056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis.
    Gao Y; Yuan Q; Mao Z; Liu H; Ma H
    BMC Microbiol; 2021 Oct; 21(1):292. PubMed ID: 34696732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks.
    Singh S; Samal A; Giri V; Krishna S; Raghuram N; Jain S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052708. PubMed ID: 23767567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms.
    König R; Schramm G; Oswald M; Seitz H; Sager S; Zapatka M; Reinelt G; Eils R
    BMC Bioinformatics; 2006 Mar; 7():119. PubMed ID: 16524469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
    Yoon J; Si Y; Nolan R; Lee K
    Bioinformatics; 2007 Sep; 23(18):2433-40. PubMed ID: 17660208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.
    Notebaart RA; Teusink B; Siezen RJ; Papp B
    PLoS Comput Biol; 2008 Jan; 4(1):e26. PubMed ID: 18225949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental versatility promotes modularity in genome-scale metabolic networks.
    Samal A; Wagner A; Martin OC
    BMC Syst Biol; 2011 Aug; 5():135. PubMed ID: 21864340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC).
    Rahman SA; Advani P; Schunk R; Schrader R; Schomburg D
    Bioinformatics; 2005 Apr; 21(7):1189-93. PubMed ID: 15572476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A graph-based approach to analyze flux-balanced pathways in metabolic networks.
    Arabzadeh M; Saheb Zamani M; Sedighi M; Marashi SA
    Biosystems; 2018 Mar; 165():40-51. PubMed ID: 29337084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low degree metabolites explain essential reactions and enhance modularity in biological networks.
    Samal A; Singh S; Giri V; Krishna S; Raghuram N; Jain S
    BMC Bioinformatics; 2006 Mar; 7():118. PubMed ID: 16524470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular decomposition of metabolic systems via null-space analysis.
    Poolman MG; Sebu C; Pidcock MK; Fell DA
    J Theor Biol; 2007 Dec; 249(4):691-705. PubMed ID: 17949756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.
    Saez-Rodriguez J; Gayer S; Ginkel M; Gilles ED
    Bioinformatics; 2008 Aug; 24(16):i213-9. PubMed ID: 18689828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Edinburgh human metabolic network reconstruction and its functional analysis.
    Ma H; Sorokin A; Mazein A; Selkov A; Selkov E; Demin O; Goryanin I
    Mol Syst Biol; 2007; 3():135. PubMed ID: 17882155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway identification by network pruning in the metabolic network of Escherichia coli.
    Gerlee P; Lizana L; Sneppen K
    Bioinformatics; 2009 Dec; 25(24):3282-8. PubMed ID: 19808881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical analysis of dependency in metabolic networks.
    Gagneur J; Jackson DB; Casari G
    Bioinformatics; 2003 May; 19(8):1027-34. PubMed ID: 12761067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.