These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15037652)

  • 1. The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry.
    Hanke W; Bleckmann H
    J Exp Biol; 2004 Apr; 207(Pt 9):1585-96. PubMed ID: 15037652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina).
    Schulte-Pelkum N; Wieskotten S; Hanke W; Dehnhardt G; Mauck B
    J Exp Biol; 2007 Mar; 210(Pt 5):781-7. PubMed ID: 17297138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina).
    Wieskotten S; Dehnhardt G; Mauck B; Miersch L; Hanke W
    J Exp Biol; 2010 Nov; 213(Pt 21):3734-40. PubMed ID: 20952623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish locomotion: recent advances and new directions.
    Lauder GV
    Ann Rev Mar Sci; 2015; 7():521-45. PubMed ID: 25251278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection.
    Hanke W; Brücker C; Bleckmann H
    J Exp Biol; 2000 Apr; 203(Pt 7):1193-200. PubMed ID: 10708639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic trail-following in harbor seals (Phoca vitulina).
    Dehnhardt G; Mauck B; Hanke W; Bleckmann H
    Science; 2001 Jul; 293(5527):102-4. PubMed ID: 11441183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans.
    Bleckmann H; Breithaupt T; Blickhan R; Tautz J
    J Comp Physiol A; 1991 Jun; 168(6):749-57. PubMed ID: 1920167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus).
    Windsor SP; Tan D; Montgomery JC
    J Exp Biol; 2008 Sep; 211(Pt 18):2950-9. PubMed ID: 18775932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of fish swimming mechanics and behaviour in altered flows.
    Liao JC
    Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1973-93. PubMed ID: 17472925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3832-42. PubMed ID: 21037062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of swimming performance for fish passage of longnose dace Rhinichthys cataractae using an experimental flume.
    Dockery DR; McMahon TE; Kappenman KM; Blank M
    J Fish Biol; 2017 Mar; 90(3):980-1000. PubMed ID: 27896814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator-prey interactions.
    Niesterok B; Hanke W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb; 199(2):139-49. PubMed ID: 23180046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave energy and swimming performance shape coral reef fish assemblages.
    Fulton CJ; Bellwood DR; Wainwright PC
    Proc Biol Sci; 2005 Apr; 272(1565):827-32. PubMed ID: 15888415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes.
    Castro-Santos T
    J Exp Biol; 2005 Feb; 208(Pt 3):421-32. PubMed ID: 15671330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry.
    Higham TE; Day SW; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2653-60. PubMed ID: 16000535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus.
    Tytell ED; Lauder GV
    J Exp Biol; 2008 Nov; 211(Pt 21):3359-69. PubMed ID: 18931309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina).
    Wieskotten S; Dehnhardt G; Mauck B; Miersch L; Hanke W
    J Exp Biol; 2010 Jul; 213(Pt 13):2194-200. PubMed ID: 20543117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature surpasses the effects of velocity and turbulence on swimming performance of two invasive non-native fish species.
    Muhawenimana V; Thomas JR; Wilson CAME; Nefjodova J; Chapman AC; Williams FC; Davies DG; Griffiths SW; Cable J
    R Soc Open Sci; 2021 Feb; 8(2):201516. PubMed ID: 33972857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.