BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15038041)

  • 1. High-throughput measurement of the enantiomeric excess of chiral alcohols by using two enzymes.
    Li Z; Bütikofer L; Witholt B
    Angew Chem Int Ed Engl; 2004 Mar; 43(13):1698-702. PubMed ID: 15038041
    [No Abstract]   [Full Text] [Related]  

  • 2. Biocatalytic deuterium- and hydrogen-transfer using over-expressed ADH-'A': enhanced stereoselectivity and 2H-labeled chiral alcohols.
    Edegger K; Gruber CC; Poessl TM; Wallner SR; Lavandera I; Faber K; Niehaus F; Eck J; Oehrlein R; Hafner A; Kroutil W
    Chem Commun (Camb); 2006 Jun; (22):2402-4. PubMed ID: 16733594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly recyclable chemo-/biocatalyzed cascade reactions with ionic liquids: one-pot synthesis of chiral biaryl alcohols.
    Gauchot V; Kroutil W; Schmitzer AR
    Chemistry; 2010 Jun; 16(23):6748-51. PubMed ID: 20461833
    [No Abstract]   [Full Text] [Related]  

  • 4. Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols.
    Gröger H; Chamouleau F; Orologas N; Rollmann C; Drauz K; Hummel W; Weckbecker A; May O
    Angew Chem Int Ed Engl; 2006 Aug; 45(34):5677-81. PubMed ID: 16858704
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541.
    Karabec M; Łyskowski A; Tauber KC; Steinkellner G; Kroutil W; Grogan G; Gruber K
    Chem Commun (Camb); 2010 Sep; 46(34):6314-6. PubMed ID: 20676439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions.
    Kosjek B; Stampfer W; Pogorevc M; Goessler W; Faber K; Kroutil W
    Biotechnol Bioeng; 2004 Apr; 86(1):55-62. PubMed ID: 15007841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541.
    Stampfer W; Kosjek B; Faber K; Kroutil W
    J Org Chem; 2003 Jan; 68(2):402-6. PubMed ID: 12530865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using enzyme inhibition as a high throughput method to measure the enantiomeric excess of a chiral sulfoxide.
    Sprout CM; Seto CT
    Org Lett; 2005 Oct; 7(22):5099-102. PubMed ID: 16235967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel NADP+-dependent L-1-amino-2-propanol dehydrogenase from Rhodococcus erythropolis MAK154: a promising enzyme for the production of double chiral aminoalcohols.
    Kataoka M; Nakamura Y; Urano N; Ishige T; Shi G; Kita S; Sakamoto K; Shimizu S
    Lett Appl Microbiol; 2006 Oct; 43(4):430-5. PubMed ID: 16965375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols.
    Peng X; Taki H; Komukai S; Sekine M; Kanoh K; Kasai H; Choi SK; Omata S; Tanikawa S; Harayama S; Misawa N
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):824-32. PubMed ID: 16292529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Asymmetric Synthesis of Pyridine-Based α-Fluorinated Secondary Alcohols.
    Broese T; Ehlers P; Langer P; von Langermann J
    Chembiochem; 2021 Dec; 22(23):3314-3318. PubMed ID: 34520599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMDee: an enzymatic method for determining enantiomeric excess.
    Abato P; Seto CT
    J Am Chem Soc; 2001 Sep; 123(37):9206-7. PubMed ID: 11552847
    [No Abstract]   [Full Text] [Related]  

  • 13. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
    Mutti FG; Knaus T; Scrutton NS; Breuer M; Turner NJ
    Science; 2015 Sep; 349(6255):1525-9. PubMed ID: 26404833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):237-48. PubMed ID: 17516064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the organic solvent and thermostability of the biocatalytic redox system of Rhodococcus ruber DSM 44541.
    Stampfer W; Kosjek B; Kroutil W; Faber K
    Biotechnol Bioeng; 2003 Mar; 81(7):865-9. PubMed ID: 12557320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient route for enantioselective preparation of chlorohydrins via dynamic kinetic resolution.
    Träff A; Bogár K; Warner M; Bäckvall JE
    Org Lett; 2008 Nov; 10(21):4807-10. PubMed ID: 18817401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoselective cross metathesis of bishomoallylic alcohols: rapid access to fragment a of the cryptophycins.
    Lautens M; Maddess ML
    Org Lett; 2004 Jun; 6(12):1883-6. PubMed ID: 15176774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective synthesis of homoallylic alcohols via a chiral In(III)-PYBOX complex.
    Lu J; Hong ML; Ji SJ; Loh TP
    Chem Commun (Camb); 2005 Feb; (8):1010-2. PubMed ID: 15719099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient chemical kinetic resolution of bishomoallylic alcohols: synthesis of (R)-sulcatol.
    Chen SL; Hu QY; Loh TP
    Org Lett; 2004 Sep; 6(19):3365-7. PubMed ID: 15355053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.