These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 15038548)
1. A yeast DNA microarray for the evaluation of toxicity in environmental water containing burned ash. Kim HJ; Ishidou E; Kitagawa E; Momose Y; Iwahashi H Environ Monit Assess; 2004 Mar; 92(1-3):253-72. PubMed ID: 15038548 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. Iwahashi H; Kitagawa E; Suzuki Y; Ueda Y; Ishizawa YH; Nobumasa H; Kuboki Y; Hosoda H; Iwahashi Y BMC Genomics; 2007 Apr; 8():95. PubMed ID: 17408496 [TBL] [Abstract][Full Text] [Related]
3. Toxicogenomics using yeast DNA microarrays. Yasokawa D; Iwahashi H J Biosci Bioeng; 2010 Nov; 110(5):511-22. PubMed ID: 20624688 [TBL] [Abstract][Full Text] [Related]
4. Classification of heavy-metal toxicity by human DNA microarray analysis. Kawata K; Yokoo H; Shimazaki R; Okabe S Environ Sci Technol; 2007 May; 41(10):3769-74. PubMed ID: 17547211 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Yasokawa D; Murata S; Iwahashi Y; Kitagawa E; Nakagawa R; Hashido T; Iwahashi H Appl Biochem Biotechnol; 2010 Mar; 160(6):1685-98. PubMed ID: 19499198 [TBL] [Abstract][Full Text] [Related]
6. Effects of the pesticide thiuram: genome-wide screening of indicator genes by yeast DNA microarray. Kitagawa E; Takahashi J; Momose Y; Iwahashi H Environ Sci Technol; 2002 Sep; 36(18):3908-15. PubMed ID: 12269742 [TBL] [Abstract][Full Text] [Related]
7. Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. Baba A; Kaya A J Environ Manage; 2004 Nov; 73(3):199-207. PubMed ID: 15474737 [TBL] [Abstract][Full Text] [Related]
8. Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Bartosiewicz M; Penn S; Buckpitt A Environ Health Perspect; 2001 Jan; 109(1):71-4. PubMed ID: 11171528 [TBL] [Abstract][Full Text] [Related]
9. DNA microarray analysis of genomic responses of yeast Saccharomyces cerevisiae to nickel chloride. Takumi S; Kimura H; Matsusaki H; Kawazoe S; Tominaga N; Arizono K J Toxicol Sci; 2010 Feb; 35(1):125-9. PubMed ID: 20118633 [TBL] [Abstract][Full Text] [Related]
10. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response. Soto A; DelRaso NJ; Schlager JJ; Chan VT Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910 [TBL] [Abstract][Full Text] [Related]
12. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Korashy HM; Attafi IM; Famulski KS; Bakheet SA; Hafez MM; Alsaad AMS; Al-Ghadeer ARM Environ Pollut; 2017 Feb; 221():64-74. PubMed ID: 27916491 [TBL] [Abstract][Full Text] [Related]
13. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. Shi Y; Li Y; Yuan X; Fu J; Ma Q; Wang Q Environ Geochem Health; 2020 Nov; 42(11):3779-3794. PubMed ID: 32594416 [TBL] [Abstract][Full Text] [Related]
14. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388 [TBL] [Abstract][Full Text] [Related]
15. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. Chen P; Zheng H; Xu H; Gao YX; Ding XQ; Ma ML PLoS One; 2019; 14(10):e0223900. PubMed ID: 31622406 [TBL] [Abstract][Full Text] [Related]
16. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511 [TBL] [Abstract][Full Text] [Related]
17. [Leaching Toxicity and Bioaccessibility of Heavy Metals in MSWI Fly Ash with Various Particle Sizes]. Wang CF; Chen GF; Zhu YC; Yao D; Huang XC; Wang LJ Huan Jing Ke Xue; 2016 Dec; 37(12):4891-4898. PubMed ID: 29965333 [TBL] [Abstract][Full Text] [Related]
18. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833 [TBL] [Abstract][Full Text] [Related]
19. Municipal solid waste incineration (MSWI) fly ash washing pretreatment by biochemical effluent of landfill leachate: a potential substitute for water. Xu Y; Fu Y; Xia W; Zhang D; An D; Qian G Environ Technol; 2018 Aug; 39(15):1949-1954. PubMed ID: 28639498 [TBL] [Abstract][Full Text] [Related]
20. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash. Ogawa N; Amano T; Nagai Y; Hagiwara K; Honda T; Koike Y Waste Manag; 2021 Apr; 124():154-159. PubMed ID: 33626420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]