These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15038838)

  • 1. The influences of L(+)-lactate and pH on contractile performance in rabbit glycerinated skeletal muscle.
    Miyake S; Ishii Y; Watari T; Huang Z; Tsuchiya T
    Jpn J Physiol; 2003 Dec; 53(6):401-9. PubMed ID: 15038838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.
    Chase PB; Kushmerick MJ
    Biophys J; 1988 Jun; 53(6):935-46. PubMed ID: 2969265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue.
    Pate E; Bhimani M; Franks-Skiba K; Cooke R
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):689-94. PubMed ID: 7473229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pH and temperature on force and stiffness of skeletal muscle fibers during contraction and relaxation in relation to musculoskeletal disorders.
    Ueno S; Yokoyama K; Nakagawa M; Araki S
    Ind Health; 2002 Oct; 40(4):362-9. PubMed ID: 12502239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of physiological L(+)-lactate concentrations on contractility of skinned striated muscle fibers of rabbit.
    Andrews MA; Godt RE; Nosek TM
    J Appl Physiol (1985); 1996 Jun; 80(6):2060-5. PubMed ID: 8806914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1994 Dec; 67(6):2404-10. PubMed ID: 7696480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate.
    Cooke R; Franks K; Luciani GB; Pate E
    J Physiol; 1988 Jan; 395():77-97. PubMed ID: 2842489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of glycerinated muscle fibers using nonnucleoside triphosphate substrates.
    Pate E; Nakamaye KL; Franks-Skiba K; Yount RG; Cooke R
    Biophys J; 1991 Mar; 59(3):598-605. PubMed ID: 2049521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.
    Ranatunga KW
    Biophys J; 1994 May; 66(5):1531-41. PubMed ID: 8061202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of partial extraction of light chain 2 on the Ca2+ sensitivities of isometric tension, stiffness, and velocity of shortening in skinned skeletal muscle fibers.
    Hofmann PA; Metzger JM; Greaser ML; Moss RL
    J Gen Physiol; 1990 Mar; 95(3):477-98. PubMed ID: 2324702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance.
    de Paoli FV; Ørtenblad N; Pedersen TH; Jørgensen R; Nielsen OB
    J Physiol; 2010 Dec; 588(Pt 23):4785-94. PubMed ID: 20876199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme.
    Iacovino LG; Rossi M; Di Stefano G; Rossi V; Binda C; Brigotti M; Tomaselli F; Pasti AP; Dal Piaz F; Cerini S; Hochkoeppler A
    Biochimie; 2022 Aug; 199():23-35. PubMed ID: 35398441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man.
    Mannion AF; Jakeman PM; Willan PL
    Exp Physiol; 1995 Jan; 80(1):89-101. PubMed ID: 7734141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle.
    Chase PB; Denkinger TM; Kushmerick MJ
    Biophys J; 1998 Mar; 74(3):1428-38. PubMed ID: 9512039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of deuterium oxide on contraction characteristics and ATPase activity in glycerinated single rabbit skeletal muscle fibers.
    Kobayashi T; Saeki Y; Chaen S; Shirakawa I; Sugi H
    Biochim Biophys Acta; 2004 Nov; 1659(1):46-51. PubMed ID: 15511526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction of glycerinated rabbit slow-twitch muscle fibers as a function of MgATP concentration.
    Pate E; Lin M; Franks-Skiba K; Cooke R
    Am J Physiol; 1992 Apr; 262(4 Pt 1):C1039-46. PubMed ID: 1566809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.