These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15038964)

  • 1. Coenzyme Q and vitamin E interactions.
    Sohal RS
    Methods Enzymol; 2004; 378():146-51. PubMed ID: 15038964
    [No Abstract]   [Full Text] [Related]  

  • 2. Ubiquinone protects against loss of tocopherol in rat liver microsomes and mitochondrial membranes.
    Hiramatsu M; Velasco RD; Wilson DS; Packer L
    Res Commun Chem Pathol Pharmacol; 1991 May; 72(2):231-41. PubMed ID: 1652151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes.
    Lass A; Sohal RS
    Arch Biochem Biophys; 1998 Apr; 352(2):229-36. PubMed ID: 9587410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of antioxidant function of vitamin E by coenzyme Q.
    Quinn PJ; Fabisiak JP; Kagan VE
    Biofactors; 1999; 9(2-4):149-54. PubMed ID: 10416026
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of coenzyme Q and superoxide in vitamin E cycling.
    Kagan VE; Tyurina YY; Witt E
    Subcell Biochem; 1998; 30():491-507. PubMed ID: 9932527
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems.
    Sugioka K; Nakano M; Totsune-Nakano H; Minakami H; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1988 Dec; 936(3):377-85. PubMed ID: 2848580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active oxygen chemistry within the liposomal bilayer. Part III: Locating Vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer.
    Afri M; Ehrenberg B; Talmon Y; Schmidt J; Cohen Y; Frimer AA
    Chem Phys Lipids; 2004 Aug; 131(1):107-21. PubMed ID: 15210369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the sidedness of the ubiquinone redox cycle. Kinetic studies in mitochondrial membranes.
    Lenaz G; Landi L; Cabrini L; Pasquali P; Sechi AM; Ozawa T
    Biochem Biophys Res Commun; 1978 Dec; 85(3):1047-53. PubMed ID: 736948
    [No Abstract]   [Full Text] [Related]  

  • 9. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles.
    Forsmark-Andrée P; Dallner G; Ernster L
    Free Radic Biol Med; 1995 Dec; 19(6):749-57. PubMed ID: 8582647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting coenzyme Q derivatives to mitochondria.
    Smith RA; Kelso GF; James AM; Murphy MP
    Methods Enzymol; 2004; 382():45-67. PubMed ID: 15047095
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular associations of vitamin E.
    Quinn PJ
    Vitam Horm; 2007; 76():67-98. PubMed ID: 17628172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between ubiquinones and vitamins in membranes and cells.
    Constantinescu A; Maguire JJ; Packer L
    Mol Aspects Med; 1994; 15 Suppl():s57-65. PubMed ID: 7752845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane.
    Arroyo A; Kagan VE; Tyurin VA; Burgess JR; de Cabo R; Navas P; Villalba JM
    Antioxid Redox Signal; 2000; 2(2):251-62. PubMed ID: 11229530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial electron transport-linked tocopheroxyl radical reduction.
    Maguire JJ; Wilson DS; Packer L
    J Biol Chem; 1989 Dec; 264(36):21462-5. PubMed ID: 2557330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen.
    Nohl H; Gille L; Schönheit K; Liu Y
    Free Radic Biol Med; 1996; 20(2):207-13. PubMed ID: 8746441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant properties of chromanols derived from vitamin E and ubiquinone.
    Gregor W; Adelwöhrer C; Rosenau T; Grabner G; Gille L
    Ann N Y Acad Sci; 2004 Dec; 1031():344-7. PubMed ID: 15753166
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial superoxide anion production and release into intermembrane space.
    Han D; Antunes F; Daneri F; Cadenas E
    Methods Enzymol; 2002; 349():271-80. PubMed ID: 11912916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid protein interactions in mitochondria. VIII. Effect of general anesthetics on the mobility of spin labels in lipid vesicles and mitochondrial membranes.
    Mazzanti L; Curatola G; Zolese G; Bertoli E; Lenaz G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):17-32. PubMed ID: 233470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Free radical reactions and energy transformation in microsome membranes. Arrhenius equation for the monooxygenase reaction].
    Dmitriev LF
    Biofizika; 2001; 46(1):60-8. PubMed ID: 11236564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of coenzyme Q and vitamin E with multibilayer liposomes.
    Gomez-Fernandez JC; Aranda FJ; Villalain J; Ortiz A
    Adv Exp Med Biol; 1988; 238():127-39. PubMed ID: 3250237
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.