BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15039020)

  • 1. Spherocyte shape transformation and release of tubular nanovesicles in human erythrocytes.
    Iglic A; Veranic P; Jezernik K; Fosnaric M; Kamin B; Hägerstrand H; Kralj-Iglic V
    Bioelectrochemistry; 2004 May; 62(2):159-61. PubMed ID: 15039020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B
    Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agglutination of like-charged red blood cells induced by binding of beta2-glycoprotein I to outer cell surface.
    Lokar M; Urbanija J; Frank M; Hägerstrand H; Rozman B; Bobrowska-Hägerstrand M; Iglic A; Kralj-Iglic V
    Bioelectrochemistry; 2008 Aug; 73(2):110-6. PubMed ID: 18495556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Morphological characteristic of erythrocytes in experimental hypervitaminosis A].
    Minashkina TA
    Morfologiia; 2011; 139(2):41-4. PubMed ID: 21866805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The ATP depletion process of human erythrocytes studied by freeze fracturing].
    Kirillov VA; Votiakov VI; Konev SV
    Tsitologiia; 1987 Nov; 29(11):1245-50. PubMed ID: 3438930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of new hybrid antioxidants ichphans on erythrocyte morphology].
    Parshina EIu; Gendel' LIa; Rubin AB
    Biofizika; 2004; 49(6):1094-8. PubMed ID: 15612552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ultrastructural localization of tri-n-butyltin in human erythrocyte membranes during shape transformation leading to hemolysis.
    Porvaznik M; Gray BH; Mattie D; Jackson AG; Omlor RE
    Lab Invest; 1986 Mar; 54(3):254-67. PubMed ID: 2419664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and functional alterations of human erythrocytes induced by SiO2 particles: An electron microscopy and dielectric spectroscopy study.
    Diociaiuti M; Bordi F; Gataleta L; Baldo G; Crateri P; Paoletti L
    Environ Res; 1999 Apr; 80(3):197-207. PubMed ID: 10092440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of erythrocyte vesiculation and hemolysis parameters on the concentration of sodium dodecyl sulfate. Vesicular-competitive hemolysis.
    Chernitsky EA; Senkovich OA; Rozin VV
    Membr Cell Biol; 2001 Jul; 14(5):629-36. PubMed ID: 11699866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interaction of nonelectrolytes, the derivatives of 5-hydroxybenzimidazole, with erythrocyte membrane].
    Luneva OG; Gendel LIa; Kuznetsov IuV; Smirnov LD
    Biofizika; 2005; 50(2):310-5. PubMed ID: 15856990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in the appearance of membrane particles after various pretreatments.
    Richter W
    Acta Histochem Suppl; 1981; 23():165-71. PubMed ID: 6784161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature of the intramembraneous particle.
    Verkleij AJ; Ververgaert PH
    Acta Histochem Suppl; 1981; 23():137-43. PubMed ID: 6784157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro.
    Li SQ; Zhu RR; Zhu H; Xue M; Sun XY; Yao SD; Wang SL
    Food Chem Toxicol; 2008 Dec; 46(12):3626-31. PubMed ID: 18840495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A; Kralj-Iglic V; Hägerstrand H
    Eur Biophys J; 1998; 27(4):335-9. PubMed ID: 9691462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in intramembrane particle distribution in young and old human erythrocytes.
    Cordero JF; Rodríguez PJ; Romero PJ
    Cell Biol Int; 2004; 28(6):423-31. PubMed ID: 15223018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesiculation of human erythrocytes incubated in protein-free media.
    Pessina GP; Skiftas S; Grasso G
    Boll Soc Ital Biol Sper; 1983 May; 59(5):614-20. PubMed ID: 6882559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte vesiculation. 2. Membrane molecular transformation.
    Stibenz D; Linss W; Meyer HW; Halbhuber KJ; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1981; 108(4):580-7. PubMed ID: 6170553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative estimation of non-lamellar structures in membranes. A 31P-nmr and electron microscopical study of the influence of linolic acid on the erythrocyte membrane.
    Arnold K; Pratsch L; Meyer HW
    Acta Histochem; 1982; 70(2):205-13. PubMed ID: 6810632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.