These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 15039112)
1. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron. Ogawa H; Baba Y; Oka K Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112 [TBL] [Abstract][Full Text] [Related]
2. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. Ogawa H; Baba Y; Oka K J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157 [TBL] [Abstract][Full Text] [Related]
3. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons. Ogawa H; Baba Y; Oka K J Neurobiol; 2002 Oct; 53(1):44-56. PubMed ID: 12360582 [TBL] [Abstract][Full Text] [Related]
4. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons. Ogawa H; Mitani R Biochem Biophys Res Commun; 2015 Nov; 467(2):185-90. PubMed ID: 26456645 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system. Britz FC; Lohr C; Schmidt J; Deitmer JW Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059 [TBL] [Abstract][Full Text] [Related]
6. Dendritic design implements algorithm for synaptic extraction of sensory information. Ogawa H; Cummins GI; Jacobs GA; Oka K J Neurosci; 2008 Apr; 28(18):4592-603. PubMed ID: 18448635 [TBL] [Abstract][Full Text] [Related]
7. Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. Ogawa H; Cummins GI; Jacobs GA; Miller JP J Neurobiol; 2006 Feb; 66(3):293-307. PubMed ID: 16329129 [TBL] [Abstract][Full Text] [Related]
8. Maturation of escape circuit function during the early adulthood of cockroaches Periplaneta americana. Libersat F; Leung V; Mizrahi A; Mathenia N; Comer C J Neurobiol; 2005 Jan; 62(1):62-71. PubMed ID: 15389684 [TBL] [Abstract][Full Text] [Related]
9. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii. Hama N; Takahata M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487 [TBL] [Abstract][Full Text] [Related]
10. Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction. Yono O; Shimozawa T Biosystems; 2008 Sep; 93(3):218-25. PubMed ID: 18550269 [TBL] [Abstract][Full Text] [Related]
11. Spike-dependent calcium influx in dendrites of the cricket giant interneuron. Ogawa H; Baba Y; Oka K J Neurobiol; 2000 Jul; 44(1):45-56. PubMed ID: 10880131 [TBL] [Abstract][Full Text] [Related]
12. Response properties of wind-sensitive giant interneurons in the fourth-instar nymphs of the cricket, Gryllus bimaculatus. Matsuura T; Kanou M Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):1-9. PubMed ID: 16125990 [TBL] [Abstract][Full Text] [Related]
13. Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System. Ogawa H; Oka K J Neurosci; 2015 Aug; 35(33):11644-55. PubMed ID: 26290241 [TBL] [Abstract][Full Text] [Related]
14. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system. Bodnar DA J Comp Physiol A; 1993 May; 172(5):641-51. PubMed ID: 8331608 [TBL] [Abstract][Full Text] [Related]
16. Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. Ogawa H; Baba Y; Oka K J Neurobiol; 2002 Feb; 50(3):234-44. PubMed ID: 11810638 [TBL] [Abstract][Full Text] [Related]
17. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell. Mellon D J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014 [TBL] [Abstract][Full Text] [Related]
18. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. Theunissen F; Roddey JC; Stufflebeam S; Clague H; Miller JP J Neurophysiol; 1996 Apr; 75(4):1345-64. PubMed ID: 8727382 [TBL] [Abstract][Full Text] [Related]
19. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss. Schrader S Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187 [TBL] [Abstract][Full Text] [Related]
20. Neuronal organization of a fast-mediating cephalothoracic pathway for antennal-tactile information in the cricket (Gryllus bimaculatus DeGeer). Schöneich S; Schildberger K; Stevenson PA J Comp Neurol; 2011 Jun; 519(9):1677-90. PubMed ID: 21452239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]