These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15039329)

  • 1. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2004 Apr; 72(4):2075-80. PubMed ID: 15039329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2003 Mar; 71(3):1225-33. PubMed ID: 12595436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation.
    Zamboni DS
    Infect Immun; 2004 Apr; 72(4):2395-9. PubMed ID: 15039367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II.
    Zamboni DS; Mortara RA; Freymuller E; Rabinovitch M
    Microbes Infect; 2002 May; 4(6):591-8. PubMed ID: 12048028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii.
    van Schaik EJ; Chen C; Mertens K; Weber MM; Samuel JE
    Nat Rev Microbiol; 2013 Aug; 11(8):561-73. PubMed ID: 23797173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbicidal property of B1 cell derived mononuclear phagocyte.
    Popi AF; Zamboni DS; Mortara RA; Mariano M
    Immunobiology; 2009; 214(8):664-73. PubMed ID: 19321225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections.
    Brennan RE; Russell K; Zhang G; Samuel JE
    Infect Immun; 2004 Nov; 72(11):6666-75. PubMed ID: 15501800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular life of Coxiella burnetii in macrophages.
    Ghigo E; Pretat L; Desnues B; Capo C; Raoult D; Mege JL
    Ann N Y Acad Sci; 2009 May; 1166():55-66. PubMed ID: 19538264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation.
    Howe D; Barrows LF; Lindstrom NM; Heinzen RA
    Infect Immun; 2002 Sep; 70(9):5140-7. PubMed ID: 12183564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis.
    Meghari S; Bechah Y; Capo C; Lepidi H; Raoult D; Murray PJ; Mege JL
    PLoS Pathog; 2008 Feb; 4(2):e23. PubMed ID: 18248094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4.
    Honstettre A; Ghigo E; Moynault A; Capo C; Toman R; Akira S; Takeuchi O; Lepidi H; Raoult D; Mege JL
    J Immunol; 2004 Mar; 172(6):3695-703. PubMed ID: 15004173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics.
    Berón W; Gutierrez MG; Rabinovitch M; Colombo MI
    Infect Immun; 2002 Oct; 70(10):5816-21. PubMed ID: 12228312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced production of nitric oxide and sensitivity of alveolar macrophages derived from mice with different sensitivity to Coxiella burnetii.
    Yoshiie K; Matayoshi S; Fujimura T; Maeno N; Oda H
    Acta Virol; 1999 Oct; 43(5):273-8. PubMed ID: 10757226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.
    de Chastellier C; Thibon M; Rabinovitch M
    Eur J Cell Biol; 1999 Aug; 78(8):580-92. PubMed ID: 10494865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-gamma mediates its restoration and bacterial killing.
    Ghigo E; Capo C; Tung CH; Raoult D; Gorvel JP; Mege JL
    J Immunol; 2002 Oct; 169(8):4488-95. PubMed ID: 12370385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MyD88 Is Required for Efficient Control of
    Kohl L; Hayek I; Daniel C; Schulze-Lührmann J; Bodendorfer B; Lührmann A; Lang R
    Front Immunol; 2019; 10():165. PubMed ID: 30800124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infection of human monocyte-derived macrophages with Coxiella burnetii.
    Shannon JG; Heinzen RA
    Methods Mol Biol; 2008; 431():189-200. PubMed ID: 18287757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infection of Vero cells with Coxiella burnetii phase II: relative intracellular bacterial load and distribution estimated by confocal laser scanning microscopy and morphometry.
    Zamboni DS; Mortara RA; Rabinovitch M
    J Microbiol Methods; 2001 Jan; 43(3):223-32. PubMed ID: 11118656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis.
    Benoit M; Ghigo E; Capo C; Raoult D; Mege JL
    PLoS Pathog; 2008 May; 4(5):e1000066. PubMed ID: 18483547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments.
    Pechstein J; Schulze-Luehrmann J; Lührmann A
    Int J Med Microbiol; 2018 Jan; 308(1):77-83. PubMed ID: 28935173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.