BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15039367)

  • 1. Genetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation.
    Zamboni DS
    Infect Immun; 2004 Apr; 72(4):2395-9. PubMed ID: 15039367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2004 Apr; 72(4):2075-80. PubMed ID: 15039329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbicidal property of B1 cell derived mononuclear phagocyte.
    Popi AF; Zamboni DS; Mortara RA; Mariano M
    Immunobiology; 2009; 214(8):664-73. PubMed ID: 19321225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro.
    Fernandes TD; Cunha LD; Ribeiro JM; Massis LM; Lima-Junior DS; Newton HJ; Zamboni DS
    Infect Immun; 2016 Sep; 84(9):2439-48. PubMed ID: 27297388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection.
    Sauer JD; Shannon JG; Howe D; Hayes SF; Swanson MS; Heinzen RA
    Infect Immun; 2005 Aug; 73(8):4494-504. PubMed ID: 16040960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Early Stages of Human Alveolar Infection by the Q Fever Agent
    Dragan AL; Kurten RC; Voth DE
    Infect Immun; 2019 Mar; 87(5):. PubMed ID: 30833339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2003 Mar; 71(3):1225-33. PubMed ID: 12595436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection.
    Elliott A; Peng Y; Zhang G
    Infect Immun; 2013 Dec; 81(12):4604-14. PubMed ID: 24082077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages.
    Cockrell DC; Long CM; Robertson SJ; Shannon JG; Miller HE; Myers L; Larson CL; Starr T; Beare PA; Heinzen RA
    PLoS One; 2017; 12(3):e0173528. PubMed ID: 28278296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation.
    Howe D; Barrows LF; Lindstrom NM; Heinzen RA
    Infect Immun; 2002 Sep; 70(9):5140-7. PubMed ID: 12183564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced production of nitric oxide and sensitivity of alveolar macrophages derived from mice with different sensitivity to Coxiella burnetii.
    Yoshiie K; Matayoshi S; Fujimura T; Maeno N; Oda H
    Acta Virol; 1999 Oct; 43(5):273-8. PubMed ID: 10757226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection.
    Bastos RG; Howard ZP; Hiroyasu A; Goodman AG
    Infect Immun; 2017 Jul; 85(7):. PubMed ID: 28438980
    [No Abstract]   [Full Text] [Related]  

  • 13. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II.
    Zamboni DS; Mortara RA; Freymuller E; Rabinovitch M
    Microbes Infect; 2002 May; 4(6):591-8. PubMed ID: 12048028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections.
    Brennan RE; Russell K; Zhang G; Samuel JE
    Infect Immun; 2004 Nov; 72(11):6666-75. PubMed ID: 15501800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spread and distribution of Coxiella burnetii in C57BL/6J (H-2b) and Balb/cJ (H-2d) mice after intraperitoneal infection.
    Baumgärtner W; Dettinger H; Schmeer N
    J Comp Pathol; 1993 Feb; 108(2):165-84. PubMed ID: 8473567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of innate and adaptive immunity in the control of Q fever.
    Capo C; Mege JL
    Adv Exp Med Biol; 2012; 984():273-86. PubMed ID: 22711637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages.
    Clemente TM; Mulye M; Justis AV; Nallandhighal S; Tran TM; Gilk SD
    Infect Immun; 2018 Oct; 86(10):. PubMed ID: 30061378
    [No Abstract]   [Full Text] [Related]  

  • 18. Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages.
    Graham JG; MacDonald LJ; Hussain SK; Sharma UM; Kurten RC; Voth DE
    Cell Microbiol; 2013 Jun; 15(6):1012-25. PubMed ID: 23279051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.
    Larson CL; Beare PA; Voth DE; Howe D; Cockrell DC; Bastidas RJ; Valdivia RH; Heinzen RA
    Infect Immun; 2015 Feb; 83(2):661-70. PubMed ID: 25422265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative virulence of phase I and II Coxiella burnetii in immunodeficient mice.
    Andoh M; Russell-Lodrigue KE; Zhang G; Samuel JE
    Ann N Y Acad Sci; 2005 Dec; 1063():167-70. PubMed ID: 16481509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.