These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15039551)
1. Metals in the sporulation phosphorelay: manganese binding by the response regulator Spo0F. Mukhopadhyay D; Sen U; Zapf J; Varughese KI Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):638-45. PubMed ID: 15039551 [TBL] [Abstract][Full Text] [Related]
2. Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation. Kojetin DJ; Thompson RJ; Benson LM; Naylor S; Waterman J; Davies KG; Opperman CH; Stephenson K; Hoch JA; Cavanagh J Biometals; 2005 Oct; 18(5):449-66. PubMed ID: 16333746 [TBL] [Abstract][Full Text] [Related]
3. A response regulatory protein with the site of phosphorylation blocked by an arginine interaction: crystal structure of Spo0F from Bacillus subtilis. Madhusudan M; Zapf J; Hoch JA; Whiteley JM; Xuong NH; Varughese KI Biochemistry; 1997 Oct; 36(42):12739-45. PubMed ID: 9335530 [TBL] [Abstract][Full Text] [Related]
4. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Tzeng YL; Feher VA; Cavanagh J; Perego M; Hoch JA Biochemistry; 1998 Nov; 37(47):16538-45. PubMed ID: 9843420 [TBL] [Abstract][Full Text] [Related]
5. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. Tzeng YL; Hoch JA J Mol Biol; 1997 Sep; 272(2):200-12. PubMed ID: 9299348 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Madhusudan ; Zapf J; Whiteley JM; Hoch JA; Xuong NH; Varughese KI Structure; 1996 Jun; 4(6):679-90. PubMed ID: 8805550 [TBL] [Abstract][Full Text] [Related]
7. High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Feher VA; Zapf JW; Hoch JA; Whiteley JM; McIntosh LP; Rance M; Skelton NJ; Dahlquist FW; Cavanagh J Biochemistry; 1997 Aug; 36(33):10015-25. PubMed ID: 9254596 [TBL] [Abstract][Full Text] [Related]
8. A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates. Zapf JW; Hoch JA; Whiteley JM Biochemistry; 1996 Mar; 35(9):2926-33. PubMed ID: 8608130 [TBL] [Abstract][Full Text] [Related]
9. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Zapf J; Sen U; Madhusudan ; Hoch JA; Varughese KI Structure; 2000 Aug; 8(8):851-62. PubMed ID: 10997904 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Wörner K; Szurmant H; Chiang C; Hoch JA Mol Microbiol; 2006 Feb; 59(3):1000-12. PubMed ID: 16420367 [TBL] [Abstract][Full Text] [Related]
11. Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Glasfeld A; Guedon E; Helmann JD; Brennan RG Nat Struct Biol; 2003 Aug; 10(8):652-7. PubMed ID: 12847518 [TBL] [Abstract][Full Text] [Related]
12. A source of response regulator autophosphatase activity: the critical role of a residue adjacent to the Spo0F autophosphorylation active site. Zapf J; Madhusudan M; Grimshaw CE; Hoch JA; Varughese KI; Whiteley JM Biochemistry; 1998 May; 37(21):7725-32. PubMed ID: 9601032 [TBL] [Abstract][Full Text] [Related]
13. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Burbulys D; Trach KA; Hoch JA Cell; 1991 Feb; 64(3):545-52. PubMed ID: 1846779 [TBL] [Abstract][Full Text] [Related]
14. The conformations of the manganese transport regulator of Bacillus subtilis in its metal-free state. DeWitt MA; Kliegman JI; Helmann JD; Brennan RG; Farrens DL; Glasfeld A J Mol Biol; 2007 Feb; 365(5):1257-65. PubMed ID: 17118401 [TBL] [Abstract][Full Text] [Related]
16. Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Grimshaw CE; Huang S; Hanstein CG; Strauch MA; Burbulys D; Wang L; Hoch JA; Whiteley JM Biochemistry; 1998 Feb; 37(5):1365-75. PubMed ID: 9477965 [TBL] [Abstract][Full Text] [Related]
17. Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Rajan SS; Yang X; Collart F; Yip VL; Withers SG; Varrot A; Thompson J; Davies GJ; Anderson WF Structure; 2004 Sep; 12(9):1619-29. PubMed ID: 15341727 [TBL] [Abstract][Full Text] [Related]
18. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Sullivan SM; Holyoak T Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of response regulator dephosphorylation by Rap phosphatases. Parashar V; Mirouze N; Dubnau DA; Neiditch MB PLoS Biol; 2011 Feb; 9(2):e1000589. PubMed ID: 21346797 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Sun X; Baker HM; Ge R; Sun H; He QY; Baker EN Biochemistry; 2009 Jul; 48(26):6184-90. PubMed ID: 19463017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]