These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1080 related articles for article (PubMed ID: 15040813)
21. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. Aroh O; Halanych KM BMC Genomics; 2021 Jun; 22(1):466. PubMed ID: 34157969 [TBL] [Abstract][Full Text] [Related]
22. Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. Roulin A; Piegu B; Wing RA; Panaud O Plant J; 2008 Mar; 53(6):950-9. PubMed ID: 18088314 [TBL] [Abstract][Full Text] [Related]
24. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
25. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586 [TBL] [Abstract][Full Text] [Related]
26. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Vitte C; Panaud O Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661 [TBL] [Abstract][Full Text] [Related]
28. RetrOryza: a database of the rice LTR-retrotransposons. Chaparro C; Guyot R; Zuccolo A; Piégu B; Panaud O Nucleic Acids Res; 2007 Jan; 35(Database issue):D66-70. PubMed ID: 17071960 [TBL] [Abstract][Full Text] [Related]
29. The landscape and structural diversity of LTR retrotransposons in Musa genome. Nouroz F; Noreen S; Ahmad H; Heslop-Harrison JSP Mol Genet Genomics; 2017 Oct; 292(5):1051-1067. PubMed ID: 28601922 [TBL] [Abstract][Full Text] [Related]
30. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related]
31. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Bowen NJ; Jordan IK; Epstein JA; Wood V; Levin HL Genome Res; 2003 Sep; 13(9):1984-97. PubMed ID: 12952871 [TBL] [Abstract][Full Text] [Related]
32. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463 [TBL] [Abstract][Full Text] [Related]
33. TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. Yin H; Liu J; Xu Y; Liu X; Zhang S; Ma J; Du J PLoS One; 2013; 8(7):e68587. PubMed ID: 23861922 [TBL] [Abstract][Full Text] [Related]
34. Survey of long terminal repeat retrotransposons of domesticated silkworm (Bombyx mori). Jin-Shan X; Qing-You X; Jun L; Guo-Qing P; Ze-Yang Z Insect Biochem Mol Biol; 2005 Aug; 35(8):921-9. PubMed ID: 15944087 [TBL] [Abstract][Full Text] [Related]
35. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. Jiang SY; Ramachandran S PLoS One; 2013; 8(7):e71118. PubMed ID: 23923055 [TBL] [Abstract][Full Text] [Related]
36. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome. Moisy C; Garrison KE; Meredith CP; Pelsy F BMC Genomics; 2008 Oct; 9():469. PubMed ID: 18842156 [TBL] [Abstract][Full Text] [Related]
37. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F; Ungerer MC BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730 [TBL] [Abstract][Full Text] [Related]
38. Functional and structural divergence of an unusual LTR retrotransposon family in plants. Gao D; Jimenez-Lopez JC; Iwata A; Gill N; Jackson SA PLoS One; 2012; 7(10):e48595. PubMed ID: 23119066 [TBL] [Abstract][Full Text] [Related]
39. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
40. Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. Tubío JM; Naveira H; Costas J Mol Biol Evol; 2005 Jan; 22(1):29-39. PubMed ID: 15356275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]