BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15040952)

  • 1. Yeast cells display a regulatory mechanism in response to methylglyoxal.
    Aguilera J; Prieto JA
    FEMS Yeast Res; 2004 Mar; 4(6):633-41. PubMed ID: 15040952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae.
    Aguilera J; Rodríguez-Vargas S; Prieto JA
    Mol Microbiol; 2005 Apr; 56(1):228-39. PubMed ID: 15773992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein glycation in Saccharomyces cerevisiae. Argpyrimidine formation and methylglyoxal catabolism.
    Gomes RA; Sousa Silva M; Vicente Miranda H; Ferreira AE; Cordeiro CA; Freire AP
    FEBS J; 2005 Sep; 272(17):4521-31. PubMed ID: 16128820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase.
    van Vaeck C; Wera S; van Dijck P; Thevelein JM
    Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha.
    Nomura W; Maeta K; Kita K; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2008 Nov; 376(4):738-42. PubMed ID: 18812164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the aldose reductase GRE3 suppresses lithium-induced galactose toxicity in Saccharomyces cerevisiae.
    Masuda CA; Previato JO; Miranda MN; Assis LJ; Penha LL; Mendonça-Previato L; Montero-Lomelí M
    FEMS Yeast Res; 2008 Dec; 8(8):1245-53. PubMed ID: 18811659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging.
    Jazwinski SM
    Gene; 2005 Jul; 354():22-7. PubMed ID: 15890475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage-induced gene expression in Saccharomyces cerevisiae.
    Fu Y; Pastushok L; Xiao W
    FEMS Microbiol Rev; 2008 Nov; 32(6):908-26. PubMed ID: 18616603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.
    Roy A; Hashmi S; Li Z; Dement AD; Cho KH; Kim JH
    Mol Biol Cell; 2016 Mar; 27(5):862-71. PubMed ID: 26764094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae.
    Dilova I; Powers T
    FEMS Yeast Res; 2006 Jan; 6(1):112-9. PubMed ID: 16423076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p.
    Shamrock VJ; Lindsey GG
    Can J Microbiol; 2008 Jul; 54(7):559-68. PubMed ID: 18641702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast.
    Kumar A; John L; Alam MM; Gupta A; Sharma G; Pillai B; Sengupta S
    Biochem J; 2006 May; 396(1):61-9. PubMed ID: 16433631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms.
    Aguilera J; Randez-Gil F; Prieto JA
    FEMS Microbiol Rev; 2007 Apr; 31(3):327-41. PubMed ID: 17298585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular methylglyoxal toxicity in Saccharomyces cerevisiae: role of glucose and phosphate ions.
    Ispolnov K; Gomes RA; Silva MS; Freire AP
    J Appl Microbiol; 2008 Apr; 104(4):1092-102. PubMed ID: 18194258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.