BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 15040955)

  • 1. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
    Harhangi HR; Akhmanova AS; Emmens R; van der Drift C; de Laat WT; van Dijken JP; Jetten MS; Pronk JT; Op den Camp HJ
    Arch Microbiol; 2003 Aug; 180(2):134-41. PubMed ID: 12811467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T; Hotta A; Ito T; Ishii J; Yamada R; Hasunuma T; Ogino C; Ohmura N; Ohshima T; Kondo A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1215-21. PubMed ID: 20853104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
    Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses].
    Dmytruk OV; Dmytruk KV; Voronovs'kyĭ AIa; Sybirnyĭ AA
    Tsitol Genet; 2008; 42(2):70-84. PubMed ID: 18630124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G
    Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium.
    Kim DM; Choi SH; Ko BS; Jeong GY; Jang HB; Han JG; Jeong KH; Lee HY; Won Y; Kim IC
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):183-9. PubMed ID: 21989637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.