These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15040974)

  • 1. DEPT spectral editing in HCCONH-type experiments. Application to fast protein backbone and side chain assignment.
    Brutscher B
    J Magn Reson; 2004 Apr; 167(2):178-84. PubMed ID: 15040974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid assignment of protein side chain resonances using projection-reconstruction of (4,3)D HC(CCO)NH and intra-HC(C)NH experiments.
    Jiang L; Coggins BE; Zhou P
    J Magn Reson; 2005 Jul; 175(1):170-6. PubMed ID: 15949755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY).
    Hiller S; Joss R; Wider G
    J Am Chem Soc; 2008 Sep; 130(36):12073-9. PubMed ID: 18710239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid type identification in NMR spectra of proteins via beta- and gamma-carbon edited experiments.
    Pantoja-Uceda D; Santoro J
    J Magn Reson; 2008 Dec; 195(2):187-95. PubMed ID: 18829356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side-chain H and C resonance assignment in protonated/partially deuterated proteins using an improved 3D(13)C-detected HCC-TOCSY.
    Hu K; Vögeli B; Pervushin K
    J Magn Reson; 2005 Jun; 174(2):200-8. PubMed ID: 15862235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BEST-HNN and 2D-(HN)NH experiments for rapid backbone assignment in proteins.
    Kumar D; Paul S; Hosur RV
    J Magn Reson; 2010 May; 204(1):111-7. PubMed ID: 20236846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer optimized spectral aliasing in the indirect dimension of (1)H-(13)C heteronuclear 2D NMR experiments. A new algorithm and examples of applications to small molecules.
    Jeannerat D
    J Magn Reson; 2007 May; 186(1):112-22. PubMed ID: 17321175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.
    Kamisetty H; Bailey-Kellogg C; Pandurangan G
    Bioinformatics; 2006 Jan; 22(2):172-80. PubMed ID: 16287932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins.
    Zawadzka-Kazimierczuk A; Kazimierczuk K; Koźmiński W
    J Magn Reson; 2010 Jan; 202(1):109-16. PubMed ID: 19880336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment in (13C, 15N) labeled proteins.
    Kumar D; Reddy JG; Hosur RV
    J Magn Reson; 2010 Sep; 206(1):134-8. PubMed ID: 20643567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved method for unambiguous amino acid side-chain 1H and 13C resonance assignment.
    Löhr F; Betz M; Rüterjans H
    Magn Reson Chem; 2004 Mar; 42(3):321-8. PubMed ID: 14971017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A set of BEST triple-resonance experiments for time-optimized protein resonance assignment.
    Lescop E; Schanda P; Brutscher B
    J Magn Reson; 2007 Jul; 187(1):163-9. PubMed ID: 17468025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments.
    Atreya HS; Eletsky A; Szyperski T
    J Am Chem Soc; 2005 Apr; 127(13):4554-5. PubMed ID: 15796503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving resolution in single-scan 2D spectroscopy.
    Pelupessy P; Duma L; Bodenhausen G
    J Magn Reson; 2008 Oct; 194(2):169-74. PubMed ID: 18667342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution.
    O'Hare B; Benesi AJ; Showalter SA
    J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimizing the overlap problem in protein NMR: a computational framework for precision amino acid labeling.
    Sweredoski MJ; Donovan KJ; Nguyen BD; Shaka AJ; Baldi P
    Bioinformatics; 2007 Nov; 23(21):2829-35. PubMed ID: 17895278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast nuclear magnetic resonance correlation spectroscopy without diagonal peaks: the "2-1" correlation spectroscopy.
    Liu H; Jiang B; Liu M; Mao XA
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026104. PubMed ID: 18315336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of one-bond 13Calpha-1Halpha residual dipolar coupling constants in proteins by selective manipulation of CalphaHalpha spins.
    Ball G; Meenan N; Bromek K; Smith BO; Bella J; Uhrín D
    J Magn Reson; 2006 May; 180(1):127-36. PubMed ID: 16495100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D selective-TOCSY-DQFCOSY and HSQC-TOCSY NMR experiments for assignment of a homogeneous asparagine-linked triantennary complex type undecasaccharide.
    Sato H; Fukae K; Kajihara Y
    Carbohydr Res; 2008 Jun; 343(8):1333-45. PubMed ID: 18395704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.