BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15040980)

  • 21. A tracked approach for automated NMR assignments in proteins (TATAPRO).
    Atreya HS; Sahu SC; Chary KV; Govil G
    J Biomol NMR; 2000 Jun; 17(2):125-36. PubMed ID: 10921777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonuniform sampling and maximum entropy reconstruction applied to the accurate measurement of residual dipolar couplings.
    Kubat JA; Chou JJ; Rovnyak D
    J Magn Reson; 2007 Jun; 186(2):201-11. PubMed ID: 17350866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.
    Chevelkov V; Fink U; Reif B
    J Am Chem Soc; 2009 Oct; 131(39):14018-22. PubMed ID: 19743845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous measurement of protein one-bond residual dipolar couplings without increased resonance overlap.
    Vijayan V; Zweckstetter M
    J Magn Reson; 2005 Jun; 174(2):245-53. PubMed ID: 15862241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two simple NMR experiments for measuring dipolar couplings in asparagine and glutamine side chains.
    Permi P
    J Magn Reson; 2001 Dec; 153(2):267-72. PubMed ID: 11740905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude.
    Clore GM; Gronenborn AM; Tjandra N
    J Magn Reson; 1998 Mar; 131(1):159-62. PubMed ID: 9533920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced sensitivity to residual dipolar couplings of elastomers by higher-order multiple-quantum NMR.
    Fechete R; Demco DE; Blümich B
    J Magn Reson; 2004 Jul; 169(1):19-26. PubMed ID: 15183352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning.
    Zhou DH; Shah G; Cormos M; Mullen C; Sandoz D; Rienstra CM
    J Am Chem Soc; 2007 Sep; 129(38):11791-801. PubMed ID: 17725352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An HNCO-based Pulse Scheme for the Measurement of 13Cα-1Hα One-bond Dipolar couplings in 15N, 13C Labeled Proteins.
    Yang D; Tolman JR; Goto NK; Kay LE
    J Biomol NMR; 1998 Aug; 12(2):325-32. PubMed ID: 21136327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-swept HSQC sequences for high-throughput NMR analysis.
    Spitzer TD; Rutkowske RD; Dorsey GF
    Magn Reson Chem; 2008 Jun; 46(6):564-70. PubMed ID: 18389496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An analysis of the effects of 1HN-(1)HN dipolar couplings on the measurement of amide bond vector orientations in invisible protein states by relaxation dispersion NMR.
    van Ingen H; Korzhnev DM; Kay LE
    J Phys Chem B; 2009 Jul; 113(29):9968-77. PubMed ID: 19569643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolution enhancement in spectra of natural products dissolved in weakly orienting media with the help of 1H homonuclear dipolar decoupling during acquisition: application to 1H-13C dipolar couplings measurements.
    Farjon J; Bermel W; Griesinger C
    J Magn Reson; 2006 May; 180(1):72-82. PubMed ID: 16537112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative J correlation methods for the accurate measurement of 13C'-13Calpha dipolar couplings in proteins.
    Jaroniec CP; Ulmer TS; Bax A
    J Biomol NMR; 2004 Oct; 30(2):181-94. PubMed ID: 15666562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the redox state and secondary structure of cysteine residues in proteins using NMR chemical shifts.
    Wang CC; Chen JH; Yin SH; Chuang WJ
    Proteins; 2006 Apr; 63(1):219-26. PubMed ID: 16444707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer optimized spectral aliasing in the indirect dimension of (1)H-(13)C heteronuclear 2D NMR experiments. A new algorithm and examples of applications to small molecules.
    Jeannerat D
    J Magn Reson; 2007 May; 186(1):112-22. PubMed ID: 17321175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualisation of enantiomers via insertion of a BIRD module in X-H correlation experiments in chiral liquid crystal solvent.
    Ziani L; Courtieu J; Merlet D
    J Magn Reson; 2006 Nov; 183(1):60-7. PubMed ID: 16905346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2D separated-local-field spectra from projections of 1D experiments.
    Bertelsen K; Pedersen JM; Nielsen NC; Vosegaard T
    J Magn Reson; 2007 Feb; 184(2):330-6. PubMed ID: 17084651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
    Caffrey M; Kaufman J; Stahl SJ; Wingfield PT; Gronenborn AM; Clore GM
    J Magn Reson; 1998 Dec; 135(2):368-72. PubMed ID: 9878465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.