These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15041199)

  • 1. Modulation of motor patterns by sensory feedback during earthworm locomotion.
    Mizutani K; Shimoi T; Ogawa H; Kitamura Y; Oka K
    Neurosci Res; 2004 Apr; 48(4):457-62. PubMed ID: 15041199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech.
    Crisp KM; Mesce KA
    J Exp Biol; 2004 Dec; 207(Pt 26):4535-42. PubMed ID: 15579549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of oscillatory firing neurons associated with locomotion in the earthworm through synapse imaging.
    Shimoi T; Mizutani K; Kojima D; Kitamura Y; Hotta K; Ogawa H; Oka K
    Neuroscience; 2014 May; 268():149-58. PubMed ID: 24657777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fictive locomotion induced by octopamine in the earthworm.
    Mizutani K; Ogawa H; Saito J; Oka K
    J Exp Biol; 2002 Jan; 205(Pt 2):265-71. PubMed ID: 11821492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of two types of synaptic activity in the earthworm nervous system during locomotion.
    Mizutani K; Shimoi T; Kitamura Y; Ogawa H; Oka K
    Neuroscience; 2003; 121(2):473-8. PubMed ID: 14522005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of sensory and motor function in earthworm escape reflex pathways following ventral nerve cord transplantation.
    Vining EP; Drewes CD
    J Neurobiol; 1985 Jul; 16(4):301-15. PubMed ID: 4031850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of respiratory activity by locomotion in lampreys.
    Gravel J; Brocard F; Gariépy JF; Lund JP; Dubuc R
    Neuroscience; 2007 Feb; 144(3):1120-32. PubMed ID: 17137720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.
    Fox LE; Soll DR; Wu CF
    J Neurosci; 2006 Feb; 26(5):1486-98. PubMed ID: 16452672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M; McCrea DA
    J Neurophysiol; 2005 Aug; 94(2):1120-32. PubMed ID: 15872066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heartbeat control in leeches. II. Fictive motor pattern.
    Wenning A; Hill AA; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):397-409. PubMed ID: 13679405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect assessment of gamma-motor firing patterns.
    Taylor A; Durbaba R; Ellaway PH
    Can J Physiol Pharmacol; 2004; 82(8-9):793-802. PubMed ID: 15523537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of motor pattern frequency by reversals in proprioceptive feedback.
    Smarandache CR; Daur N; Hedrich UB; Stein W
    Eur J Neurosci; 2008 Aug; 28(3):460-74. PubMed ID: 18702718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat.
    Berg RW; Chen MT; Huang HC; Hsiao MC; Cheng H
    J Neurosci Methods; 2009 Aug; 182(1):49-54. PubMed ID: 19505501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2007 Feb; 97(2):1428-44. PubMed ID: 17167058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections.
    Tian LM; Kawai R; Crow T
    J Neurophysiol; 2006 Jul; 96(1):327-35. PubMed ID: 16641389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion.
    Weber DJ; Stein RB; Everaert DG; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):240-3. PubMed ID: 16792303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback.
    Bryden J; Cohen N
    Biol Cybern; 2008 Apr; 98(4):339-51. PubMed ID: 18350313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.
    Johnston RM; Levine RB
    Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.