These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15041296)

  • 1. Biodegradation of haloacetic acids by bacterial enrichment cultures.
    McRae BM; LaPara TM; Hozalski RM
    Chemosphere; 2004 May; 55(6):915-25. PubMed ID: 15041296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of six haloacetic acids in drinking water.
    Bayless W; Andrews RC
    J Water Health; 2008 Mar; 6(1):15-22. PubMed ID: 17998604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems.
    Zhang P; Lapara TM; Goslan EH; Xie Y; Parsons SA; Hozalski RM
    Environ Sci Technol; 2009 May; 43(9):3169-75. PubMed ID: 19534130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water.
    Wang W; Zhu L
    J Hazard Mater; 2010 Feb; 174(1-3):40-6. PubMed ID: 19781851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.
    Wang K; Guo J; Yang M; Junji H; Deng R
    J Hazard Mater; 2009 Mar; 162(2-3):1243-8. PubMed ID: 18692959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and enumeration of haloacetic acid-degrading bacteria in drinking water distribution systems using dehalogenase genes.
    Leach LH; Zhang P; Lapara TM; Hozalski RM; Camper AK
    J Appl Microbiol; 2009 Sep; 107(3):978-88. PubMed ID: 19486431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation.
    Macur RE; Wheeler JT; Burr MD; Inskeep WP
    Microbiol Res; 2007; 162(1):37-45. PubMed ID: 16814534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA).
    Sousa DZ; Alves JI; Alves MM; Smidt H; Stams AJ
    Environ Microbiol; 2009 Jan; 11(1):68-80. PubMed ID: 18783383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis.
    Olaniran AO; Stafford WH; Cowan DA; Pillay D; Pillay B
    J Microbiol Biotechnol; 2007 Apr; 17(4):560-70. PubMed ID: 18051265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.
    Long RM; Lappin-Scott HM; Stevens JR
    Biodegradation; 2009 Jul; 20(4):521-31. PubMed ID: 19132328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation.
    Tang S; Wang XM; Yang HW; Xie YF
    Chemosphere; 2013 Jan; 90(4):1563-7. PubMed ID: 23079162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative biodegradation of geosmin by a consortium comprising three gram-negative bacteria isolated from the biofilm of a sand filter column.
    Hoefel D; Ho L; Aunkofer W; Monis PT; Keegan A; Newcombe G; Saint CP
    Lett Appl Microbiol; 2006 Oct; 43(4):417-23. PubMed ID: 16965373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation and distribution of haloacetic acids in copper pipe during chlorination.
    Li B; Liu R; Liu H; Gu J; Qu J
    J Hazard Mater; 2008 Mar; 152(1):250-8. PubMed ID: 17689009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil.
    Mahmood S; Paton GI; Prosser JI
    Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG
    J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.
    Waters SM; Murphy RA; Power RF
    Int J Food Microbiol; 2006 Aug; 110(3):268-77. PubMed ID: 16814892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of haloacetic acids in human urine by headspace gas chromatography-mass spectrometry.
    Cardador MJ; Gallego M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jul; 878(21):1824-30. PubMed ID: 20541479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a stable microbial community with high cellulose-degradation ability.
    Haruta S; Cui Z; Huang Z; Li M; Ishii M; Igarashi Y
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):529-34. PubMed ID: 12172621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of dibromoneopentyl glycol by a bacterial consortium.
    Segev O; Abeliovich A; Kushmaro A
    Chemosphere; 2007 Jun; 68(5):958-64. PubMed ID: 17313969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.