BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

805 related articles for article (PubMed ID: 15041473)

  • 1. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5.
    Dunkern TR; Hatzelmann A
    Cell Signal; 2005 Mar; 17(3):331-9. PubMed ID: 15567064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases.
    Manns JM; Brenna KJ; Colman RW; Sheth SB
    Thromb Haemost; 2002 May; 87(5):873-9. PubMed ID: 12038792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of protease-activated receptor (PAR) 1 and PAR4 signaling in human platelets by compartmentalized cyclic nucleotide actions.
    Bilodeau ML; Hamm HE
    J Pharmacol Exp Ther; 2007 Aug; 322(2):778-88. PubMed ID: 17525299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis.
    Netherton SJ; Maurice DH
    Mol Pharmacol; 2005 Jan; 67(1):263-72. PubMed ID: 15475573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipyridamole synergizes with nitric oxide to prolong inhibition of thrombin-induced platelet shape change.
    Jensen BO; Kleppe R; Kopperud R; Nygaard G; Døskeland SO; Holmsen H; Selheim F
    Platelets; 2011; 22(1):8-19. PubMed ID: 20958117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells.
    Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M
    J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system.
    Zhu Y; Yao J; Meng Y; Kasai A; Hiramatsu N; Hayakawa K; Miida T; Takeda M; Okada M; Kitamura M
    Br J Pharmacol; 2006 Jul; 148(6):833-44. PubMed ID: 16751794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships.
    Ko WC; Shih CM; Lai YH; Chen JH; Huang HL
    Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation.
    Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C
    Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension.
    Murray F; MacLean MR; Pyne NJ
    Br J Pharmacol; 2002 Dec; 137(8):1187-94. PubMed ID: 12466227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phototransduction cascade in the isolated chick pineal gland revisited.
    Holthues H; Vollrath L
    Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of antiplatelet activity of PC-09, a newly synthesized pyridazinone derivative.
    Cherng SC; Huang WH; Shiau CY; Lee AR; Chou TC
    Eur J Pharmacol; 2006 Feb; 532(1-2):32-7. PubMed ID: 16457809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic AMP and cyclic GMP phosphodiesterase inhibition by an antiplatelet agent, 6-[(3-methylene-2-oxo-5-phenyl-5-tetrahydrofuranyl)methoxy)quinol inone (CCT-62).
    Liao CH; Tzeng CC; Teng CM
    Eur J Pharmacol; 1998 May; 349(1):107-14. PubMed ID: 9669503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphodiesterase inhibitors in airways disease.
    Fan Chung K
    Eur J Pharmacol; 2006 Mar; 533(1-3):110-7. PubMed ID: 16458289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 7-Bromo-1,5-dihydro-3,6-dimethylimidazo[2,1-b]quinazolin-2(3H)- one (Ro 15-2041), a potent antithrombotic agent that selectively inhibits platelet cyclic AMP-phosphodiesterase.
    Muggli R; Tschopp TB; Mittelholzer E; Baumgartner HR
    J Pharmacol Exp Ther; 1985 Oct; 235(1):212-9. PubMed ID: 2995647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-talk between adenosine and the oxatriazole derivative GEA 3175 in platelets.
    Asplund Persson A; Zalavary S; Lindström E; Whiss PA; Bengtsson T; Grenegård M
    Eur J Pharmacol; 2005 Jul; 517(3):149-57. PubMed ID: 15963495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.