These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15041649)

  • 21. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin.
    Grossfield A; Pitman MC; Feller SE; Soubias O; Gawrisch K
    J Mol Biol; 2008 Aug; 381(2):478-86. PubMed ID: 18585736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
    Botelho AV; Huber T; Sakmar TP; Brown MF
    Biophys J; 2006 Dec; 91(12):4464-77. PubMed ID: 17012328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer.
    Filizola M; Wang SX; Weinstein H
    J Comput Aided Mol Des; 2006; 20(7-8):405-16. PubMed ID: 17089205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.
    Yuan S; Filipek S; Palczewski K; Vogel H
    Nat Commun; 2014 Sep; 5():4733. PubMed ID: 25203160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin.
    Ballesteros J; Palczewski K
    Curr Opin Drug Discov Devel; 2001 Sep; 4(5):561-74. PubMed ID: 12825452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy.
    Komolov KE; Aguilà M; Toledo D; Manyosa J; Garriga P; Koch KW
    Anal Bioanal Chem; 2010 Aug; 397(7):2967-76. PubMed ID: 20544180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer.
    Wang D; Yu H; Liu X; Liu J; Song C
    Sci Rep; 2017 Dec; 7(1):16985. PubMed ID: 29209002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of bovine rhodopsin in a trigonal crystal form.
    Li J; Edwards PC; Burghammer M; Villa C; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function.
    Soubias O; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2015 Mar; 108(5):1125-32. PubMed ID: 25762324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer.
    Cordomí A; Edholm O; Perez JJ
    J Comput Chem; 2007 Apr; 28(6):1017-30. PubMed ID: 17269123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular simulations of rhodopsin tetrameter.
    Witt M; Ciarkowski J; Czaplewski C
    Protein Pept Lett; 2007; 14(4):381-7. PubMed ID: 17504096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of the internal water molecules in squid rhodopsin.
    Jardón-Valadez E; Bondar AN; Tobias DJ
    Biophys J; 2009 Apr; 96(7):2572-6. PubMed ID: 19348742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics study of peptide-bilayer adsorption.
    Shepherd CM; Schaus KA; Vogel HJ; Juffer AH
    Biophys J; 2001 Feb; 80(2):579-96. PubMed ID: 11159427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy.
    Fried SDE; Lewis JW; Szundi I; Martinez-Mayorga K; Mahalingam M; Vogel R; Kliger DS; Brown MF
    Biophys J; 2021 Feb; 120(3):440-452. PubMed ID: 33217383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study.
    Mihailescu M; Gawrisch K
    Biophys J; 2006 Jan; 90(1):L04-6. PubMed ID: 16258049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.