BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15041656)

  • 1. Molecular dynamics simulations of hydrophilic pores in lipid bilayers.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2004 Apr; 86(4):2156-64. PubMed ID: 15041656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport across transmembrane pores.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2007 Jun; 92(12):4209-15. PubMed ID: 17384063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.
    Xie JY; Ding GH; Karttunen M
    Biochim Biophys Acta; 2014 Mar; 1838(3):994-1002. PubMed ID: 24374317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of pore formation in stretched phospholipid/cholesterol bilayers.
    Shigematsu T; Koshiyama K; Wada S
    Chem Phys Lipids; 2014 Oct; 183():43-9. PubMed ID: 24863643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields.
    Tieleman DP; Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2003 May; 125(21):6382-3. PubMed ID: 12785774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers.
    Yesylevskyy S; Marrink SJ; Mark AE
    Biophys J; 2009 Jul; 97(1):40-9. PubMed ID: 19580742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.
    Wrona A; Kubica K
    J Liposome Res; 2018 Sep; 28(3):218-225. PubMed ID: 28641466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching.
    Koshiyama K; Wada S
    J Biomech; 2011 Jul; 44(11):2053-8. PubMed ID: 21658696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of rupture in lipid bilayers.
    Tomasini MD; Rinaldi C; Tomassone MS
    Exp Biol Med (Maywood); 2010 Feb; 235(2):181-8. PubMed ID: 20404033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A soft poration of planar bilayer lipid membranes from dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state].
    Antonov VF; Anosov AA; Norik VP; Smirnova EIu
    Biofizika; 2005; 50(5):867-77. PubMed ID: 16248162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melittin creates transient pores in a lipid bilayer: results from computer simulations.
    Santo KP; Irudayam SJ; Berkowitz ML
    J Phys Chem B; 2013 May; 117(17):5031-42. PubMed ID: 23534858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension.
    Sonne J; Jensen MØ; Hansen FY; Hemmingsen L; Peters GH
    Biophys J; 2007 Jun; 92(12):4157-67. PubMed ID: 17400696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension.
    Muddana HS; Gullapalli RR; Manias E; Butler PJ
    Phys Chem Chem Phys; 2011 Jan; 13(4):1368-78. PubMed ID: 21152516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.