BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15041656)

  • 21. Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations.
    Esteban-Martín S; Risselada HJ; Salgado J; Marrink SJ
    J Am Chem Soc; 2009 Oct; 131(42):15194-202. PubMed ID: 19795891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects.
    Anosov AA; Smirnova EY; Sharakshane AA; Nikolayeva EA; Zhdankina YS
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183147. PubMed ID: 31812627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water channel formation and ion transport in linear and branched lipid bilayers.
    Wang S; Larson RG
    Phys Chem Chem Phys; 2014 Apr; 16(16):7251-62. PubMed ID: 24618598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lateral pressure profiles in cholesterol-DPPC bilayers.
    Patra M
    Eur Biophys J; 2005 Dec; 35(1):79-88. PubMed ID: 16205919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore formation in a lipid bilayer under a tension ramp: modeling the distribution of rupture tensions.
    Boucher PA; Joós B; Zuckermann MJ; Fournier L
    Biophys J; 2007 Jun; 92(12):4344-55. PubMed ID: 17400693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new force field for simulating phosphatidylcholine bilayers.
    Poger D; Van Gunsteren WF; Mark AE
    J Comput Chem; 2010 Apr; 31(6):1117-25. PubMed ID: 19827145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore.
    Akimov SA; Volynsky PE; Galimzyanov TR; Kuzmin PI; Pavlov KV; Batishchev OV
    Sci Rep; 2017 Sep; 7(1):12152. PubMed ID: 28939906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension.
    Zhelev DV; Needham D
    Biochim Biophys Acta; 1993 Apr; 1147(1):89-104. PubMed ID: 8466935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cation and anion transport through hydrophilic pores in lipid bilayers.
    Kandasamy SK; Larson RG
    J Chem Phys; 2006 Aug; 125(7):074901. PubMed ID: 16942374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural change in lipid bilayers and water penetration induced by shock waves: molecular dynamics simulations.
    Koshiyama K; Kodama T; Yano T; Fujikawa S
    Biophys J; 2006 Sep; 91(6):2198-205. PubMed ID: 16798798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulations of phospholipid bilayers with cholesterol.
    Hofsäss C; Lindahl E; Edholm O
    Biophys J; 2003 Apr; 84(4):2192-206. PubMed ID: 12668428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free energy of hydrophilic and hydrophobic pores in lipid bilayers by free energy perturbation of a restraint.
    Dixit M; Lazaridis T
    J Chem Phys; 2020 Aug; 153(5):054101. PubMed ID: 32770888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases.
    Jordanova A; Lalchev Z; Tenchov B
    Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.
    Issack BB; Peslherbe GH
    J Phys Chem B; 2015 Jul; 119(29):9391-400. PubMed ID: 25679811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.